Question

Let T be a linear transformation from Rr to Rs . Determine whether or not T...

Let T be a linear transformation from Rr to Rs .
Determine whether or not T is one-to-one in each of the following situations:
1. r > s
2. r < s
3. r = s


A. T is not a one-to-one transformation
B. T is a one-to-one transformation
C. There is not enough information to tell

Explain reason clearly plz

Homework Answers

Answer #1

A transformation T: V→W is one-to-one, if, different vectors in the domain have different images in the range i.e. T(u)=T(v) implies that u = v.

A transformation T:V→ W is onto if, for every vector in the range is the image of some vector in the domain.
(i) r > s.

In this case, T: Rr → Rs cannot be one-to-one as the domain will have more linearly independent vectors than the range. However, T can be onto as there are fewer linearly independent vectors in the range than in the domain.

(ii). r = s .

In this case, T can be both one-to-one and onto. For example, the identity transformation from Rn to Rn is both one-to-one and onto.

(iii). r < s

In this case, T can be one- to- one. For example, T: R2 → R3 defined by T(x,y)=(x,y,0) is one- to- one. However, T cannot be onto as T is onto if and only if the dimension of the range of T = dimension of the co-domain..

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Let T be an linear transformation from ℝr to ℝs. Let A be the matrix associated...
Let T be an linear transformation from ℝr to ℝs. Let A be the matrix associated to T. Fill in the correct answer for each of the following situations (enter your answers as A, B, or C).   1. Every row in the row-echelon form of A has a leading entry.   2. Two rows in the row-echelon form of A do not have leading entries.   3. The row-echelon form of A has a leading entry in every column.   4. The row-echelon...
Determine whether or not the transformation T is linear. If the transformation is linear, find the...
Determine whether or not the transformation T is linear. If the transformation is linear, find the associated representation matrix (with respect to the standard basis). (a) T ( x , y ) = ( y , x + 2 ) (b) T ( x , y ) = ( x + y , 0 )
(a) Let T be any linear transformation from R2 to R2 and v be any vector...
(a) Let T be any linear transformation from R2 to R2 and v be any vector in R2 such that T(2v) = T(3v) = 0. Determine whether the following is true or false, and explain why: (i) v = 0, (ii) T(v) = 0. (b) Find the matrix associated to the geometric transformation on R2 that first reflects over the y-axis and then contracts in the y-direction by a factor of 1/3 and expands in the x direction by a...
Let T be the linear transformation from R2 to R2, that rotates a vector clockwise by...
Let T be the linear transformation from R2 to R2, that rotates a vector clockwise by 60◦ about the origin, then reflects it about the line y = x, and then reflects it about the x-axis. a) Find the standard matrix of the linear transformation T. b) Determine if the transformation T is invertible. Give detailed explanation. If T is invertible, find the standard matrix of the inverse transformation T−1. Please show all steps clearly so I can follow your...
let let T : R^3 --> R^2 be a linear transformation defined by T ( x,...
let let T : R^3 --> R^2 be a linear transformation defined by T ( x, y , z) = ( x-2y -z , 2x + 4y - 2z) a give an example of two elements in K ev( T ) and show that these sum i also an element of K er( T)
Let T:V-->V be a linear transformation and let T^3(x)=0 for all x in V. Prove that...
Let T:V-->V be a linear transformation and let T^3(x)=0 for all x in V. Prove that R(T^2) is a subset of N(T).
let T:P2→P4 be a linear transformation defined by T(a+bx+cx2)=2bx−cx2−cx4. (a) Find ker(T) and give a basis...
let T:P2→P4 be a linear transformation defined by T(a+bx+cx2)=2bx−cx2−cx4. (a) Find ker(T) and give a basis for ker(T). (b) Find range(T)range(T) and give a basis for range(T). (c) By justifying your answer determine whether T is one-to-one. (d) By justifying your answer determine whether T is onto.
Let the linear transformation T: V--->W be such that T (u) = u2 If a, b...
Let the linear transformation T: V--->W be such that T (u) = u2 If a, b are Real. Find T (au + bv) , if u = (x, y) v = (z, w) and uv = (xz-yw, xw + yz) Let the linear transformation T: V---> W be such that T (u) = T (x, y) = (xy, 0) where u = (x, y), with 2, -3. Then, if u = ( 1.0) and v = (0.1). Find the value...
1) Let T : V —> W be a linear transformation with dim(V) = m and...
1) Let T : V —> W be a linear transformation with dim(V) = m and dim(W) = n. For which of the following conditions is T one-to-one? (A) m>n (B) range(T)=Wandm=n (C) nullity(T) = m (D) rank(T)=m-1andn>m 2) For which of the linear transformations is nullity (T) = 0 ? Why? (A)T:R3 —>R8 (B)T:P3 —>P3 (C)T:M23 —>M33 (D)T:R5 —>R2 withrank(T)=2 withrank(T)=3 withrank(T)=6 withrank(T)=1
Let T be a linear transformation that is one-to-one, and u, v be two vectors that...
Let T be a linear transformation that is one-to-one, and u, v be two vectors that are linearly independent. Is it true that the image vectors T(u), T(v) are linearly independent? Explain why or why not.
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT