Question

1) Let T : V —> W be a linear transformation with dim(V) = m and...

1) Let T : V —> W be a linear transformation with dim(V) = m and dim(W) = n. For which of the following conditions is T one-to-one?

  1. (A) m>n

  2. (B) range(T)=Wandm=n

  3. (C) nullity(T) = m

  4. (D) rank(T)=m-1andn>m

2) For which of the linear transformations is nullity (T) = 0 ? Why?

(A)T:R3 —>R8 (B)T:P3 —>P3 (C)T:M23 —>M33 (D)T:R5 —>R2

withrank(T)=2 withrank(T)=3 withrank(T)=6 withrank(T)=1

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
10 Linear Transformations. Let V = R2 and W = R3. Define T: V → W...
10 Linear Transformations. Let V = R2 and W = R3. Define T: V → W by T(x1, x2) = (x1 − x2, x1, x2). Find the matrix representation of T using the standard bases in both V and W 11 Let T :R3 →R3 be a linear transformation such that T(1, 0, 0) = (2, 4, −1), T(0, 1, 0) = (1, 3, −2), T(0, 0, 1) = (0, −2, 2). Compute T(−2, 4, −1).
Let T(V)=AV be a linear transformation where A=(3 -2 6 -1 15, 4 3 8 10...
Let T(V)=AV be a linear transformation where A=(3 -2 6 -1 15, 4 3 8 10 -14, 2 -3 4 -4 20) a.) construct a basis of the kernal T b.) calculate the basis of the range of T c.) determine the rank and nullity of T
Let V and W be finite-dimensional vector spaces over F, and let φ : V →...
Let V and W be finite-dimensional vector spaces over F, and let φ : V → W be a linear transformation. Let dim(ker(φ)) = k, dim(V ) = n, and 0 < k < n. A basis of ker(φ), {v1, . . . , vk}, can be extended to a basis of V , {v1, . . . , vk, vk+1, . . . , vn}, for some vectors vk+1, . . . , vn ∈ V . Prove that...
3. Let V and W be finite-dimensional vector spaces over field F with dim(V) = n...
3. Let V and W be finite-dimensional vector spaces over field F with dim(V) = n and dim(W) = m, and let φ : V → W be a linear transformation. Fill in the six blanks to give bounds on the sizes of the dimension of ker(φ) and the dimension of im(φ). 3. Let V and W be finite-dimensional vector spaces over field F with dim(V ) = n and dim(W) = m, and let φ : V → W...
1. Let T be a linear transformation from vector spaces V to W. a. Suppose that...
1. Let T be a linear transformation from vector spaces V to W. a. Suppose that U is a subspace of V, and let T(U) be the set of all vectors w in W such that T(v) = w for some v in V. Show that T(U) is a subspace of W. b. Suppose that dimension of U is n. Show that the dimension of T(U) is less than or equal to n.
1. Let V and W be finite-dimensional vector spaces over field F with dim(V) = n...
1. Let V and W be finite-dimensional vector spaces over field F with dim(V) = n and dim(W) = m, and let φ : V → W be a linear transformation. A) If m = n and ker(φ) = (0), what is im(φ)? B) If ker(φ) = V, what is im(φ)? C) If φ is surjective, what is im(φ)? D) If φ is surjective, what is dim(ker(φ))? E) If m = n and φ is surjective, what is ker(φ)? F)...
Suppose V is a vector space over F, dim V = n, let T be a...
Suppose V is a vector space over F, dim V = n, let T be a linear transformation on V. 1. If T has an irreducible characterisctic polynomial over F, prove that {0} and V are the only T-invariant subspaces of V. 2. If the characteristic polynomial of T = g(t) h(t) for some polynomials g(t) and h(t) of degree < n , prove that V has a T-invariant subspace W such that 0 < dim W < n
let T: V ->W be a linear transformation. Show that if T is an isophormism and...
let T: V ->W be a linear transformation. Show that if T is an isophormism and B is a basis of V, then T(B) is a basis of W
Let the linear transformation T: V--->W be such that T (u) = u2 If a, b...
Let the linear transformation T: V--->W be such that T (u) = u2 If a, b are Real. Find T (au + bv) , if u = (x, y) v = (z, w) and uv = (xz-yw, xw + yz) Let the linear transformation T: V---> W be such that T (u) = T (x, y) = (xy, 0) where u = (x, y), with 2, -3. Then, if u = ( 1.0) and v = (0.1). Find the value...
Let T: U--> V be a linear transformation. Prove that the range of T is a...
Let T: U--> V be a linear transformation. Prove that the range of T is a subspace of W
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT