Question

Let T be the linear transformation from R2 to R2, that rotates a vector clockwise by...

Let T be the linear transformation from R2 to R2, that rotates a vector clockwise by 60◦ about the origin, then reflects it about the line y = x, and then reflects it about the x-axis.
a) Find the standard matrix of the linear transformation T.
b) Determine if the transformation T is invertible. Give detailed explanation. If T is invertible, find the standard matrix of the inverse transformation T−1.

Please show all steps clearly so I can follow your logic and learnt to solve similar ones myself. I will rate your answer for you. thank you kindly!

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
(12) (after 3.3) (a) Find a linear transformation T : R2 → R2 such that T...
(12) (after 3.3) (a) Find a linear transformation T : R2 → R2 such that T (x) = Ax that reflects a vector (x1, x2) about the x2-axis. (b) Find a linear transformation S : R2 → R2 such that T(x) = Bx that rotates a vector (x1, x2) counterclockwise by 135 degrees. (c) Find a linear transformation (with domain and codomain) that has the effect of first reflecting as in (a) and then rotating as in (b). Give the...
3.) Find the linear transformation T : R2 to R2 described geometrically by "first rotate counter-clockwise...
3.) Find the linear transformation T : R2 to R2 described geometrically by "first rotate counter-clockwise by 60 degrees, then reflect across the line y = x, then scale vectors by a factor of 5". Is this linear transformation invertible? If so, find the matrix of the inverse transformation.
(a) Let T be any linear transformation from R2 to R2 and v be any vector...
(a) Let T be any linear transformation from R2 to R2 and v be any vector in R2 such that T(2v) = T(3v) = 0. Determine whether the following is true or false, and explain why: (i) v = 0, (ii) T(v) = 0. (b) Find the matrix associated to the geometric transformation on R2 that first reflects over the y-axis and then contracts in the y-direction by a factor of 1/3 and expands in the x direction by a...
3. Find the linear transformation T : R2 → R2 described geometrically by “first rotate coun-...
3. Find the linear transformation T : R2 → R2 described geometrically by “first rotate coun- terclockwise by 60◦, then reflect across the line y = x, then scale vectors by a factor of 5”. Is this linear transformation invertible? If so, find the matrix of the inverse transformation.
Find Eigenvalues and Eigenspaces for matrix: The 2 × 2 matrix AT associated to the linear...
Find Eigenvalues and Eigenspaces for matrix: The 2 × 2 matrix AT associated to the linear transformation T : R2 → R2 which rotates a vector π/4-radians then reflects it about the x-axis.
Let V and W be vector spaces and let T:V→W be a linear transformation. We say...
Let V and W be vector spaces and let T:V→W be a linear transformation. We say a linear transformation S:W→V is a left inverse of T if ST=Iv, where ?v denotes the identity transformation on V. We say a linear transformation S:W→V is a right inverse of ? if ??=?w, where ?w denotes the identity transformation on W. Finally, we say a linear transformation S:W→V is an inverse of ? if it is both a left and right inverse of...
Assume that T is a linear Transformation. a) Find the Standard matrix of T is T:...
Assume that T is a linear Transformation. a) Find the Standard matrix of T is T: R2 -> R3 first rotate point through (pie)/2 radian (counterclock-wise) and then reflects points through the horizontal x-axis b) Use part a to find the image of point (1,1) under the transformation T Please explain as much as possible. This was a past test question that I got no points on. I'm study for the final and am trying to understand past test questions.
Give an example of a linear transformation T:R2 -->R2 such that rank(T)=rank(T2) and T does not...
Give an example of a linear transformation T:R2 -->R2 such that rank(T)=rank(T2) and T does not equal T2. Write the matrix representation of T(denoted [T]) with respect to the standard ordered basis
Let T be a 1-1 linear transformation from a vector space V to a vector space...
Let T be a 1-1 linear transformation from a vector space V to a vector space W. If the vectors u, v and w are linearly independent in V, prove that T(u), T(v), T(w) are linearly independent in W
Consider the transformation T: R2 -> R3 defined by T(x,y) = (x-y,x+y,x+2y) Answer the Following a)Find...
Consider the transformation T: R2 -> R3 defined by T(x,y) = (x-y,x+y,x+2y) Answer the Following a)Find the Standard Matrix A for the linear transformation b)Find T([1 -2]) c) determine if c = [0 is in the range of the transformation T 2 3] Please explain as much as possible this is a test question that I got no points on. Now studying for the final and trying to understand past test questions.
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT