Question

Let T be an linear transformation from ℝr to ℝs. Let A be the matrix associated...

Let T be an linear transformation from ℝr to ℝs. Let A be the matrix associated to T.

Fill in the correct answer for each of the following situations (enter your answers as A, B, or C).

  1. Every row in the row-echelon form of A has a leading entry.
  2. Two rows in the row-echelon form of A do not have leading entries.
  3. The row-echelon form of A has a leading entry in every column.
  4. The row-echelon form of A has a row of zeros.

A. T is not surjective
B. T is surjective
C. There is not enough information to tell.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Consider a system of linear equations with augmented matrix A and coefficient matrix C. In each...
Consider a system of linear equations with augmented matrix A and coefficient matrix C. In each case either prove the statement or give an example showing that it is false. • If there is more than one solution, A has a row of zeros. • If A has a row of zeros, there is more than one solution. • If there is no solution, the row-echelon form of C has a row of zeros. • If the row-echelon form of...
Let T be a linear transformation from Rr to Rs . Determine whether or not T...
Let T be a linear transformation from Rr to Rs . Determine whether or not T is one-to-one in each of the following situations: 1. r > s 2. r < s 3. r = s A. T is not a one-to-one transformation B. T is a one-to-one transformation C. There is not enough information to tell Explain reason clearly plz
Let V and W be vector spaces and let T:V→W be a linear transformation. We say...
Let V and W be vector spaces and let T:V→W be a linear transformation. We say a linear transformation S:W→V is a left inverse of T if ST=Iv, where ?v denotes the identity transformation on V. We say a linear transformation S:W→V is a right inverse of ? if ??=?w, where ?w denotes the identity transformation on W. Finally, we say a linear transformation S:W→V is an inverse of ? if it is both a left and right inverse of...
Determine whether or not the transformation T is linear. If the transformation is linear, find the...
Determine whether or not the transformation T is linear. If the transformation is linear, find the associated representation matrix (with respect to the standard basis). (a) T ( x , y ) = ( y , x + 2 ) (b) T ( x , y ) = ( x + y , 0 )
Let M be an n x n matrix with each entry equal to either 0 or...
Let M be an n x n matrix with each entry equal to either 0 or 1. Let mij denote the entry in row i and column j. A diagonal entry is one of the form mii for some i. Swapping rows i and j of the matrix M denotes the following action: we swap the values mik and mjk for k = 1,2, ... , n. Swapping two columns is defined analogously. We say that M is rearrangeable if...
Problem 2. (20 pts.) show that T is a linear transformation by finding a matrix that...
Problem 2. (20 pts.) show that T is a linear transformation by finding a matrix that implements the mapping. Note that x1, x2, ... are not vectors but are entries in vectors. (a) T(x1, x2, x3, x4) = (0, x1 + x2, x2 + x3, x3 + x4) (b) T(x1, x2, x3, x4) = 2x1 + 3x3 − 4x4 (T : R 4 → R) Problem 3. (20 pts.) Which of the following statements are true about the transformation matrix...
Let T be the linear transformation from R2 to R2, that rotates a vector clockwise by...
Let T be the linear transformation from R2 to R2, that rotates a vector clockwise by 60◦ about the origin, then reflects it about the line y = x, and then reflects it about the x-axis. a) Find the standard matrix of the linear transformation T. b) Determine if the transformation T is invertible. Give detailed explanation. If T is invertible, find the standard matrix of the inverse transformation T−1. Please show all steps clearly so I can follow your...
Problem 2. Show that T is a linear transformation by finding a matrix that implements the...
Problem 2. Show that T is a linear transformation by finding a matrix that implements the mapping. Note that x1, x2, ... are not vectors but are entries in vectors. (a) T(x1, x2, x3, x4) = (0, x1 + x2, x2 + x3, x3 + x4) (b) T(x1, x2, x3, x4) = 2x1 + 3x3 − 4x4 (T : R4 → R)​ Please show T is a linear transformation for part (a) and (b).
(a) Let T be any linear transformation from R2 to R2 and v be any vector...
(a) Let T be any linear transformation from R2 to R2 and v be any vector in R2 such that T(2v) = T(3v) = 0. Determine whether the following is true or false, and explain why: (i) v = 0, (ii) T(v) = 0. (b) Find the matrix associated to the geometric transformation on R2 that first reflects over the y-axis and then contracts in the y-direction by a factor of 1/3 and expands in the x direction by a...
(12) (after 3.3) (a) Find a linear transformation T : R2 → R2 such that T...
(12) (after 3.3) (a) Find a linear transformation T : R2 → R2 such that T (x) = Ax that reflects a vector (x1, x2) about the x2-axis. (b) Find a linear transformation S : R2 → R2 such that T(x) = Bx that rotates a vector (x1, x2) counterclockwise by 135 degrees. (c) Find a linear transformation (with domain and codomain) that has the effect of first reflecting as in (a) and then rotating as in (b). Give the...