Question

Calculate the potential at z = 4 m since the amount of uniformly distributed load on...

Calculate the potential at z = 4 m since the amount of uniformly distributed load on the surface of a 3 m radius disk in the central origin in the xy plane is 3 nC.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
4 A rectangular footing 8 m x 12 m carries a uniformly distributed load of (900+...
4 A rectangular footing 8 m x 12 m carries a uniformly distributed load of (900+ 10Y) kN/m2. Evaluate the vertical pressure at a point (2+0.5Y) m below the foundation and having x, y coordinates as (-5,-8) with respect to the central axis of the footing.    y=2
A three hinged semi-circular arch of radius 15 m carries a uniformly distributed load of 10...
A three hinged semi-circular arch of radius 15 m carries a uniformly distributed load of 10 kN/m run of horizontal span. Find horizontal thrust and location and magnitude of maximum bending moment in the arch.
A total electric charge of 3.50 nC is distributed uniformly over the surface of a metal...
A total electric charge of 3.50 nC is distributed uniformly over the surface of a metal sphere with a radius of 26.0 cm . The potential is zero at a point at infinity. 1) Find the value of the potential at 60.0 cm from the center of the sphere. 2) Find the value of the potential at 26.0 cm from the center of the sphere. 3) Find the value of the potential at 10.0 cm from the center of the...
A simply supported beam is 3 m long. It carries a uniformly distributed load of 6...
A simply supported beam is 3 m long. It carries a uniformly distributed load of 6 kN/m throughout its span and a concentrated load of 15 kN at a point 2 m from the left support. Assuming that the beam has a rectangular shape whose width and depth are 150 mm and 250 mm, respectively. Determine the maximum flexural stress in MPa developed in the beam.
A thin, uniformly charged spherical shell has a potential of 727 V on its surface. Outside...
A thin, uniformly charged spherical shell has a potential of 727 V on its surface. Outside the sphere, at a radial distance of 20.0 cm from this surface, the potential is 403 V. (1) Calculate the radius of the sphere. (2) Determine the total charge on the sphere (3) What is the electric potential inside the sphere at a radius of 3.0 cm (4) Calculate the magnitude of the electric field at the surface of the sphere. (5) If an...
A uniform disk with mass m = 9.07 kg and radius R = 1.36 m lies...
A uniform disk with mass m = 9.07 kg and radius R = 1.36 m lies in the x-y plane and centered at the origin. Three forces act in the +y-direction on the disk: 1) a force 313 N at the edge of the disk on the +x-axis, 2) a force 313 N at the edge of the disk on the –y-axis, and 3) a force 313 N acts at the edge of the disk at an angle θ =...
A uniformly charged disk of radius 10 cm carries a uniform charge density of 3nC/m^2 (a)...
A uniformly charged disk of radius 10 cm carries a uniform charge density of 3nC/m^2 (a) Calculate the electric potential (relative to zero at infinity) at a point A, situated on the symmetry axis of the disk that is perpendicular to the disk face, at a distance of 1 mm from the disk. (b) Calculate the electric potential difference ΔV between point A and another point on the same axis at a distance 2 mm from the disk. (c) Compare...
Consider a spherical uniformly charged cloud of radius 100 m. The center of the cloud is...
Consider a spherical uniformly charged cloud of radius 100 m. The center of the cloud is at a distance of 3 km from the ground. The electric field near the cloud (produced by the cloud itself) is 1 MV/m. Find the induced surface charge density on the ground under the center of the cloud (in nC/m2). Assume that the charge on the cloud is negative. Expected answer is 19.6 nC/m^2 I am unsure of how to start this.
The beam is subjected to a uniformly distributed load w= 12 kN/m. The beam is a...
The beam is subjected to a uniformly distributed load w= 12 kN/m. The beam is a two-span continuous beam. The length of each span is L = 2 m. The beam is made of steel. Young's modulus (E) of steel is 200 GPa. The value of the moment of inertia is 21 * 106 mm4. Use the force method given in Week 6. Determine the reaction at the middle support B. Select one: a. 6.00 kN b. 18.00 kN c....
3. A cantilever beam of span 5m is subjected to a uniformly distributed load of 30...
3. A cantilever beam of span 5m is subjected to a uniformly distributed load of 30 kN/m over the whole span. If the beam is made of Iron with E = 104 N/mm2 and moment of inertia I = 108 mm4. Apply the theroems of moment area method and find out the slope at the free end and deflection at the center of the beam?
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT