Question

A thin, uniformly charged spherical shell has a potential of 727 V on its surface. Outside...

A thin, uniformly charged spherical shell has a potential of 727 V on its surface. Outside the sphere, at a radial distance of 20.0 cm from this surface, the potential is 403 V.
(1) Calculate the radius of the sphere.

(2) Determine the total charge on the sphere

(3) What is the electric potential inside the sphere at a radius of 3.0 cm

(4) Calculate the magnitude of the electric field at the surface of the sphere.

(5) If an electron starts from rest at a distance of 20.0 cm from the surface of the sphere, calculate the electron's speed when it reaches the sphere's surface.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A solid, nonconducting sphere of radius R = 6.0cm is charged uniformly with an electrical charge...
A solid, nonconducting sphere of radius R = 6.0cm is charged uniformly with an electrical charge of q = 12µC. it is enclosed by a thin conducting concentric spherical shell of inner radius R, the net charge on the shell is zero. a) find the magnitude of the electrical field E1  inside the sphere (r < R) at the distance r1 = 3.0 cm from the center. b) find the magnitude of the electric field E2 outside the shell at the...
A thin spherical shell with radius R1 = 4.00cm is concentric with a larger thin spherical...
A thin spherical shell with radius R1 = 4.00cm is concentric with a larger thin spherical shell with radius 7.00cm . Both shells are made of insulating material. The smaller shell has charge q1=+6.00nC distributed uniformly over its surface, and the larger shell has charge q2=?9.00nC distributed uniformly over its surface. Take the electric potential to be zero at an infinite distance from both shells. Part A What is the electric potential due to the two shells at the following...
A thin spherical shell has a radius a and charge +Q that is distributed uniformly overr...
A thin spherical shell has a radius a and charge +Q that is distributed uniformly overr it. There is also a second spherical shell of radius b that is concentric with the first shell and has charge +Q2 uniformly distributed over it. b> a. Find the magnitude and direction of electric field in the regions (a) R<a (b)a<R<b (c)R>b (d) electric potential for the region R>b (e) electric potential for the region a<R<b (f)electric potential for the region R<a
(8c23p69) A thin, metallic, spherical shell of radius a = 7.0 cm has a charge qa...
(8c23p69) A thin, metallic, spherical shell of radius a = 7.0 cm has a charge qa = 5.00×10-6 C. Concentric with it is another thin, metallic, spherical shell of radius b = 18.90 cm and charge qb = 5.00×10-6 C. Find the electric field at radial points r where r = 0.0 cm. Find the electric field at radial points r where r = 13.0 cm. Find the electric field at radial points r where r = 28.4 cm. Discuss...
A thin spherical shell of radius R1 = 3.00 cm is concentric with another larger thin...
A thin spherical shell of radius R1 = 3.00 cm is concentric with another larger thin spherical shell of radius R2 = 5.00 cm. Both shells are made of insulating material. The smallest shell has a charge q1 = +6.00 nC distributed evenly on its surface, and the largest one has a charge q2 = -9.00 nC evenly distributed on its surface ficie. Consider the electric potential equal to zero at an in- finite of both shells. a) What is...
1) A spherical shell with a radius of 0.500 m is uniformly charged and generates an...
1) A spherical shell with a radius of 0.500 m is uniformly charged and generates an electric field. The field has a strength of 7.50 N/C at a distance of 1.00 m from the center of the sphere. (a) What is the strength of the field 2.00 m from the center of the sphere? (b) What is the strength of the field 10.0 m from the center of the sphere? (c) What is the strength of the field inside the...
A Charged Spherical Shell and a Point Charge. A spherical conducting shell of radius 1.21 [m],...
A Charged Spherical Shell and a Point Charge. A spherical conducting shell of radius 1.21 [m], carries charge 4.10×10-6 [C], distributed uniformly over its surface. At the center of the shell there is a point charge 3.90×10-9 [C]. Let Pi and Po be points inside and outside the spherical shell, respectively. The distance of Pi from the point charge is 1.06 [m], whereas is Po is 5.27 [m] away from the point charge. Calculate the electrostatic potential at a Pi...
. Calculate the potential energy stored in a spherical shell uniformly charged with full charge q...
. Calculate the potential energy stored in a spherical shell uniformly charged with full charge q and radius R. Show that the two expressions of the energy (depending on the potential and the field) give the same result. a. If we now fill this one with the same material, in order to make it a solid sphere of the same size, and maintain the same amount of charge, what is its energy? b. compare the energy of the two configurations,...
A nonconducting sphere has radius R = 2.54 cm and uniformly distributed charge q = +4.89...
A nonconducting sphere has radius R = 2.54 cm and uniformly distributed charge q = +4.89 fC. Take the electric potential at the sphere's center to be V0 = 0. What is V at radial distance from the center (a) r = 1.50 cm and (b) r = R? (Hint: See an expression for the electric field.)
A spherical shell, with inside radius R1 and outside radius R2, is uniformly magnetized in the...
A spherical shell, with inside radius R1 and outside radius R2, is uniformly magnetized in the direction of the z- axis. The magnetization in the shell is Mo = Mok. Find the scalar potential ɸ* for points on the z-axis, both inside and outside the shell
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT