Question

A thin, uniformly charged spherical shell has a potential of 727
V on its surface. Outside the sphere, at a radial distance of 20.0
cm from this surface, the potential is 403 V.

(1) Calculate the radius of the sphere.

(2) Determine the total charge on the sphere

(3) What is the electric potential inside the sphere at a radius of 3.0 cm

(4) Calculate the magnitude of the electric field at the surface of the sphere.

(5) If an electron starts from rest at a distance of 20.0 cm from the surface of the sphere, calculate the electron's speed when it reaches the sphere's surface.

Answer #1

A solid, nonconducting sphere of radius R = 6.0cm is charged
uniformly with an electrical charge of q = 12µC. it is enclosed by
a thin conducting concentric spherical shell of inner radius R, the
net charge on the shell is zero.
a) find the magnitude of the electrical field
E1 inside the sphere (r < R) at the
distance r1 = 3.0 cm from the center.
b) find the magnitude of the electric field E2
outside the shell at the...

A thin spherical shell with radius R1 = 4.00cm is
concentric with a larger thin spherical shell with radius 7.00cm .
Both shells are made of insulating material. The smaller shell has
charge q1=+6.00nC distributed uniformly over its surface,
and the larger shell has charge q2=?9.00nC distributed
uniformly over its surface. Take the electric potential to be zero
at an infinite distance from both shells.
Part A
What is the electric potential due to the two shells at the
following...

A thin spherical shell has a radius a and charge +Q that is
distributed uniformly overr it. There is also a second spherical
shell of radius b that is concentric with the first shell and has
charge +Q2 uniformly distributed over it. b> a. Find the
magnitude and direction of electric field in the regions (a) R<a
(b)a<R<b (c)R>b (d) electric potential for the region
R>b (e) electric potential for the region a<R<b
(f)electric potential for the region R<a

(8c23p69) A thin, metallic, spherical shell of radius a = 7.0 cm
has a charge qa = 5.00×10-6 C. Concentric with it is another thin,
metallic, spherical shell of radius b = 18.90 cm and charge qb =
5.00×10-6 C.
Find the electric field at radial points r where r = 0.0 cm.
Find the electric field at radial points r where r = 13.0
cm.
Find the electric field at radial points r where r = 28.4
cm.
Discuss...

A thin spherical shell of radius R1 = 3.00 cm is
concentric with another larger thin spherical shell of radius
R2 = 5.00 cm. Both shells are made of insulating material.
The smallest shell has a charge q1 = +6.00 nC distributed
evenly on its surface, and the largest one has a
charge q2 = -9.00 nC evenly distributed on its surface
ficie. Consider the electric potential equal to zero at an in-
finite of both shells. a) What is...

1) A spherical shell with a radius of 0.500 m is uniformly
charged and generates an electric field. The field has a strength
of 7.50 N/C at a distance of 1.00 m from the center of the sphere.
(a) What is the strength of the field 2.00 m from the center of the
sphere? (b) What is the strength of the field 10.0 m from the
center of the sphere? (c) What is the strength of the field inside
the...

A Charged Spherical Shell and a Point Charge.
A spherical conducting shell of radius 1.21 [m], carries charge
4.10×10-6 [C], distributed uniformly over its surface.
At the center of the shell there is a point charge
3.90×10-9 [C].
Let Pi and Po be points inside and outside
the spherical shell, respectively. The distance of Pi
from the point charge is 1.06 [m], whereas is Po is 5.27
[m] away from the point charge.
Calculate the electrostatic potential at a Pi...

. Calculate the potential energy stored in a spherical shell
uniformly charged with full charge q and radius R. Show that the
two expressions of the energy (depending on the potential and the
field) give the same result.
a. If we now fill this one with the same material, in order to
make it a solid sphere of the same size, and maintain the same
amount of charge, what is its energy?
b. compare the energy of the two configurations,...

A nonconducting sphere has radius R = 2.54 cm and
uniformly distributed charge q = +4.89 fC. Take the
electric potential at the sphere's center to be
V0 = 0. What is V at radial distance
from the center (a) r = 1.50 cm and
(b) r = R? (Hint: See
an expression for the electric field.)

A spherical shell, with inside radius R1 and outside radius R2,
is uniformly magnetized in the direction of the z- axis. The
magnetization in the shell is Mo = Mok. Find the scalar potential
ɸ* for points on the z-axis, both inside and outside the shell

ADVERTISEMENT

Get Answers For Free

Most questions answered within 1 hours.

ADVERTISEMENT

asked 2 minutes ago

asked 4 minutes ago

asked 7 minutes ago

asked 21 minutes ago

asked 26 minutes ago

asked 35 minutes ago

asked 35 minutes ago

asked 36 minutes ago

asked 37 minutes ago

asked 47 minutes ago

asked 53 minutes ago

asked 59 minutes ago