Question

Design a three-bit counter like circuit controlled by the input w. If w = 1, then...

Design a three-bit counter like circuit controlled by the input w. If w = 1, then the counter adds 2 to its contents, wrapping around if the count reaches 8 or 9. Thus if the counter reaches 8 or 9, then the next state becomes 0 or 1, respectively. If w = 0, then the counter subtracts 1 from its contents, acting as a normal down-counter. Using D-FF in your circuit, find the input equations for the FF.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Design a synchronous up/down 2-bit counter. The circuit has a single input (X), when X=1, the...
Design a synchronous up/down 2-bit counter. The circuit has a single input (X), when X=1, the counter counts up (i.e. 0,1,2,3,0,1.....), when X=0, the counter counts down (i.e. 3,2,1,0,3,2,....). Show work, including a next-state table and circuit diagram.
Using T-Flip-flops, design a 3-bit register/counter circuit with bits [A2 A1 A0]. The circuit operations are...
Using T-Flip-flops, design a 3-bit register/counter circuit with bits [A2 A1 A0]. The circuit operations are described in the following table. Show all design details, i.e., write down steps and equations and draw the detailed circuit diagram. S2 S1 S0 Operation 0 0 0 No change 0 0 1 Rotate left 0 1 0 Rotate right 0 1 1 Reset 1 0 0 Set 1 0 1 Count down 1 1 0 Count up 1 1 1 Load external bits...
Design an even parity detection circuit. A parity bit is an error checking mechanism. Your circuit...
Design an even parity detection circuit. A parity bit is an error checking mechanism. Your circuit will count the number of 1’s in a stream of bits. If the number of 1’s is even, the circuit turns on an output called Y. Assume a single bit at each cycle – call the input X. Do not use an accumulator or counter. Design the even parity detection circuit using J-K flip-flops. Your answer must include: a. The state diagram. b. The...
Design a circuit for a synchronous 4-bit counter. Your counter should count up starting from 0...
Design a circuit for a synchronous 4-bit counter. Your counter should count up starting from 0 to 9 (00002 to 10012) and then wind back to 0 (00002) – after 9, it should go back to 0. Use 4 JK flip-flops and any other gates you need. Include your design documentation in your submission: a. Truth table b. Simplification (show your work) 2. Build this circuit in Logisim. Please label each gate, including flip-flops. You may need the following wiring...
by MULTISIM Design a 4 bit Counter that displays even numbers when a switch on, and...
by MULTISIM Design a 4 bit Counter that displays even numbers when a switch on, and odd when the switch off . i want you to desgin that cirucit in MULTIsim by useing Jk flip flop please make it easy to understand and memories =[ that mean if it was even= 0 its will count 0 , 2 , 4 ,6 , 8 , 10 , 14 if it is odd = 1 its will count 1 , 3 ,...
Use contraction beginning with a 4-bit adder-subtractor with carry in, to design a 4-bit circuit without...
Use contraction beginning with a 4-bit adder-subtractor with carry in, to design a 4-bit circuit without carry out that increments its input by 0010 for input S=0 and decrements its input by 0010 for input S=1. Perform the design by designing the distinct 1-bit full adder cells needed and indicating the type of cell used in each of the four bit positions.
1.IC 74161 is a synchronous 4-bit counter designed by Texas Instruments (TI). Find the data sheet...
1.IC 74161 is a synchronous 4-bit counter designed by Texas Instruments (TI). Find the data sheet for this IC on Google and answer the following questions: a)Use two 74161 ICs to design an 8-bit counter. Hint: work with the IC input and output pins. Consider the count sequence: 0-> 1-> 2-> 3-> 4-> 5-> 0 .... b) Use a 74161 IC and the “Clear” input pin to implement this count sequence. c) Use a 74161 IC and the “Load” input...
Design a 4-bit adder-subtractor circuit using the 4-bit binary Full adders (74LS83) and any necessary additional...
Design a 4-bit adder-subtractor circuit using the 4-bit binary Full adders (74LS83) and any necessary additional logic gates. The circuit has a mode input bit, M, that controls its operation. Specifically, when M=0, the circuit becomes a 4-bit adder, and when M=1, the circuit becomes a 4-bit subtractor that performs the operation A plus the 2’s complement of B.Where A and B are two 4-bits binary numbers. That is, * When M=0, we perform A+B, and we assume that both...
Design 2 bits counter that count down by using T flip flop when input x =1...
Design 2 bits counter that count down by using T flip flop when input x =1 and counts up when x=0. Find the following 1. Derive the state table 2. Derive the K‐map simplifications. 3. Draw the logic diagram
We wish to design a 4-bit PWM to control the brightness of a 7-segment LED display....
We wish to design a 4-bit PWM to control the brightness of a 7-segment LED display. A PWM circuit will be constructed with a 74163 (4-bit binary counter) and a 7485 (4-bit magnitude comparator). The inputs and output are:  clk: DE1 50 MHz clock signal.  d: 4-bit input control signal specifying the duty cycle of output pulse.  p: 1-bit output pulse with the specified duty cycle. The d signal is treated as a 4-bit unsigned binary number....