The utility function U(X,Y)=XaY1-a where 0≤a≤1 is called the Cobb-Douglas utility function. MUx=aXa-1Y1-a MUy=(1-a)XaY-a
(note for those who know calculus MUx=∂U∂x and MUy=∂U∂y)
Utility function is U(X,Y) = X^a*Y^(1-a)
MUx = aX^(a-1)*Y^(1-a)
MUy = (1-a)X^a*Y^(-a)
MRSx,y = MUx/MUy
=aX^(a-1)*Y^(1-a)/((1-a)X^a*Y^(-a))
=(a/(1-a))(Y/X)
The Budget equation is: PxX + PyY = M
At equilibrium,MUx/MUy = Px/Py
This implies,
(a/(1-a))(Y/X) = Px/Py
aYPy = (1-a)XPx
YPy = ((1-a)/a)XPx
Thus, the demand equation is:
PxX + PyY = M
PxX +((1-a)/a)XPx = M
XPx(1+((1-a)/a)) = M
XPx(1/a)=M
X = aM/Px
Y= ((1-a)/a)XPx/Py
Y = ((1-a)/a)*aM/Py
Y = (1-a)M/Py
-----------------------------------------------------------------------------------------------------------------------------------------------------
Thus, the demand function of X = aM/Px
The demand function for Y = (1-a)M/Py
-----------------------------------------------------------------------------------------------------------------------------------------------------
Yes, good X and Y are normal goods as the quantity demanded of X and Y each is directly proportional to the income, implying the quantity of the good increases with income.
-----------------------------------------------------------------------------------------------------------------------------------------------------
When a = 0
X = aM/Px = 0
Y = (1-a)M/Py = M/Py
When a=1
X = aM/Px = M/Px
Y = (1-a)M/Py = 0
When a = 0.5
X = aM/Px = M/(2Px)
Y = (1-a)M/Py = M/(2Py)
-----------------------------------------------------------------------------------------------------------------------------------------------------
Get Answers For Free
Most questions answered within 1 hours.