Question

Donna and Jim are two consumers purchasing strawberries and chocolate. Jim’s utility function is U(x,y) =...

Donna and Jim are two consumers purchasing strawberries and chocolate. Jim’s utility function is U(x,y) = xy and Donna’s utility function is U(x,y) = x2y where x is strawberries and y is chocolate. Jim’s marginal utility functions are MUX=y and MUy=x while Donna’s are MUX=2xy and MUy=x2. Jim’s income is $100, and Donna’s income is $150.

Are strawberries a normal good or an inferior good for Jim? Explain your answer.

Homework Answers

Answer #1

Jim has a marginal rate of substitution = MUX/MUY = Y/X. The price ratio is taken as PX/PY. At the optimum bundle selected, MUX/MUY = PX/PY or Y/X = PX/PY. This gives Y = X*(PX/PY)

Now with an income of M the budget equation is M = XPX + YPY. Use X*(PX/PY) in this equation to get

M = XPX + X*(PX/PY)PY

M = XPX + XPX

M = 2XPX

X* = M/(2PX)

Find derivative of X with respect to X: dX/dM = (1/2PX) > 0. This implies that if income increases, demand for X also rises. This shows that X or strawberries is a normal good.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Donna and Jim are two consumers purchasing strawberries and chocolate. Jim’s utility function is U(x,y) =...
Donna and Jim are two consumers purchasing strawberries and chocolate. Jim’s utility function is U(x,y) = xy and Donna’s utility function is U(x,y) = x2y where x is strawberries and y is chocolate. Jim’s marginal utility functions are MUX=y and MUy=x while Donna’s are MUX=2xy and MUy=x2. Jim’s income is $100, and Donna’s income is $150. What is the optimal bundle for Jim, and for Donna, when the price of strawberries rises to $3?
Ginger's utility function is U(x,y)=x2y with associated marginal utility functions MUx=2xy and MUy=x2. She has income...
Ginger's utility function is U(x,y)=x2y with associated marginal utility functions MUx=2xy and MUy=x2. She has income I=240 and faces prices Px= $8 and Py =$2. a. Determine Gingers optimal basket given these prices and her in. b. If the price of y increase to $8 and Ginger's income is unchanged what must the price of x fall to in order for her to be exactly as well as before the change in Py?
Consider a consumer with the following utility function: U(X, Y ) = XY. (a) Derive this...
Consider a consumer with the following utility function: U(X, Y ) = XY. (a) Derive this consumer’s marginal rate of substitution, MUX/MUY (b) Derive this consumer’s demand functions X∗ and Y∗. (c) Suppose that the market for good X is composed of 3000 identical consumers, each with income of $100. Derive the market demand function for good X. Denote the market quantity demanded as QX. (d) Use calculus to show that the market demand function satisfies the law-of-demand.
The utility function U(X,Y)=XaY1-a where 0≤a≤1 is called the Cobb-Douglas utility function. MUx=aXa-1Y1-a MUy=(1-a)XaY-a (note for...
The utility function U(X,Y)=XaY1-a where 0≤a≤1 is called the Cobb-Douglas utility function. MUx=aXa-1Y1-a MUy=(1-a)XaY-a (note for those who know calculus MUx=∂U∂x and MUy=∂U∂y) Derive the demand functions for X and Y Are X and Y normal goods? If the quantity of the good increases with income a good is a normal good. If the quantity decreases with income the good is an inferior good. Describe in words the preferences corresponding to a=0, a=1, a=.5
Vincent Price utility function is U(X,Y)=X2Y, which the following marginal utilities: MUX=2XY,   MUY=X2 His income is $200...
Vincent Price utility function is U(X,Y)=X2Y, which the following marginal utilities: MUX=2XY,   MUY=X2 His income is $200 and the price of X is $6 and the price of Y is $4. A) Find Vincent's optimal basket given those price and income more step by step plz I couldn't understand the other answer that was very close to this answer
Jim’s utility function for good x and good y is U(x, y) = X^1/4*Y^3/4. 1. Calculate...
Jim’s utility function for good x and good y is U(x, y) = X^1/4*Y^3/4. 1. Calculate Jim’s marginal utilities for good x and good y. 2. Calculate Jim’s Marginal rate of substation of his utility function.
Consider a consumer whose preferences over the goods are represented by the utility function U(x,y) =...
Consider a consumer whose preferences over the goods are represented by the utility function U(x,y) = xy^2. Recall that for this function the marginal utilities are given by MUx(x, y) = y^2 and MUy(x, y) = 2xy. (a) What are the formulas for the indifference curves corresponding to utility levels of u ̄ = 1, u ̄ = 4, and u ̄ = 9? Draw these three indifference curves in one graph. (b) What is the marginal rate of substitution...
Suppose there are two consumers, A and B. The utility functions of each consumer are given...
Suppose there are two consumers, A and B. The utility functions of each consumer are given by: UA(X,Y) = X2Y UB(X,Y) = X*Y Therefore: For consumer A: MUX = 2XY; MUY = X2 For consumer B: MUX = Y; MUY = X The initial endowments are: A: X = 120; Y = 6 B: X = 30; Y = 14 a) (20 points) Suppose the price of Y, PY = 1. Calculate the price of X, PX that will lead...
Kim’s utility function is given by U = XY. For this utility function, MUx = Y...
Kim’s utility function is given by U = XY. For this utility function, MUx = Y and MUy = X. If good X costs $6, and good Y costs $3, what share of Kim’s utility-maximizing bundle is made up of good X? Of good Y? If the price of good Y rises to $4, what happens to the shares of X and Y in Kim’s utility-maximizing bundle?
Suppose a consumer has the utility function U (x, y) = xy + x + y....
Suppose a consumer has the utility function U (x, y) = xy + x + y. Recall that for this function the marginal utilities are given by MUx(x,y) = y+1 and MUy(x,y) = x+1. (a) What is the marginal rate of substitution MRSxy? (b)If the prices for the goods are px =$2 and py =$4,and if the income of the consumer is M = $18, then what is the consumer’s optimal affordable bundle? (c) What if instead the prices are...