Question

For a given language, L = {anbm | n >= 2, m >= 1}, Construct a...

For a given language, L = {anbm | n >= 2, m >= 1},

  1. Construct a minimal DFA with the minimum number of states that accepts L .
  2. Prove that your DFA in 1) is minimal.   Hint: Check if any pair of the states are indistinguishable to be merged in the same class so that the number of states are minimized              

Homework Answers

Answer #1

i explained step by step minimum states are three(3)

Anything doubtful or not understand just comment thank you and all the best

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Construct a PDA that accepts the language L = { w ∈ { a , b...
Construct a PDA that accepts the language L = { w ∈ { a , b } ∗ : n a ( w ) = n b ( w ) }, where n a ( w ) represents the number of a's that appear in the string w.
Let swap_every_two be an operation on languages that is defined as follows: swap_every_two(L) = {a2a1a4a3 ....
Let swap_every_two be an operation on languages that is defined as follows: swap_every_two(L) = {a2a1a4a3 . . . a2na2n−1 | a1a2a3a4 . . . a2n−1a2n ∈ L where a1, . . . , a2n ∈ Σ} In this definition, Σ is the alphabet for the language L. 1. What languages result from applying swap every two to the following languages: (a) {1 n | n ≥ 0}, where the alphabet is {1}. (b) {(01)n | n ≥ 0}, where the...
Question 2 a) Construct a Pushdown Automaton (PDA) for the language L (M) = {a, b}*...
Question 2 a) Construct a Pushdown Automaton (PDA) for the language L (M) = {a, b}* where, if there are any a’s must precede all b's and the number of b's must be equal to or twice the number of a’s. a) Trace the computations for the strings aabb, bbb, and abb in the PDA obtained in Question 2
Consider the language defined by L = {aibmcn | i > 0, n > m >...
Consider the language defined by L = {aibmcn | i > 0, n > m > 0 } Is L regular or not? Prove it
The chopleft operation of a regular language L is removing the leftmost symbol of every string...
The chopleft operation of a regular language L is removing the leftmost symbol of every string in L: chopleft(L) = { w | vw ∈ L, with |v| = 1}. Prove or disprove that the family of regular languages is closed under the chopleft operation.    Hint: If it’s regular, give an idea of constructing an FA that accepts chopleft(L) using an FA M that accepts L. Otherwise, give a counterexample.
Consider the NFA N with states labeled q1, q2 and q3, where q1 is the start...
Consider the NFA N with states labeled q1, q2 and q3, where q1 is the start state and q2 and q3 are the final (accepting) states. The transition function for N is δ(q1,a) = {q1}, δ(q1,b) = {q1,q2},  δ(q2,a) = {q3}, δ(q2,b)= ∅, δ(q3,a)= ∅, and δ(q3,b)= ∅. Let L be the language recognized by N i.e. L(N). a) Draw the state diagram for N. b) Describe in plain English what's in the language L. c) Via the construction NFA to...
Do a Push Down Automata for the following language: L = { 0n1m2m3n | n>=1, m>=1}...
Do a Push Down Automata for the following language: L = { 0n1m2m3n | n>=1, m>=1} Show your work please.
Given a DFA M with n states where the input alphabet has k characters, we can...
Given a DFA M with n states where the input alphabet has k characters, we can determine if the L(M) =empty set in time: A. n B. k C. n+k D. nk
Theorem: If m is an even number and n is an odd number, then m^2+n^2+1 is...
Theorem: If m is an even number and n is an odd number, then m^2+n^2+1 is even. Don’t prove it. In writing a proof by contraposition, what is your “Given” (assumption)? ___________________________ What is “To Prove”: _____________________________
prove that the language L = {a^n+1 b^2n(aa)^n b | n > 0} is non-context free....
prove that the language L = {a^n+1 b^2n(aa)^n b | n > 0} is non-context free. Using pumping lemma with length
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT