Question

Consider a consumer with Cobb-Douglas preferences over two goods, x and y described by the utility...

Consider a consumer with Cobb-Douglas preferences over two goods, x and y described by the utility function u(x, y) = 1/3ln(x) + 2/3n(y) 1. Assume the prices of the two goods are initially both $10, and her income is $1000. Obtain the consumer’s demands for x and y.

2. If the price of good x increases to $20, what is the impact on her demand for good x?

3. Decompose this change into the substitution effect, and the income effect. How big is each?

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Alice’s preferences over two goods are described by the utility function u(x1, x2) = 2x1+ 4x2....
Alice’s preferences over two goods are described by the utility function u(x1, x2) = 2x1+ 4x2. Her income is m= 100 and p1= 4, p2= 5. Assume now that the price of good 1 falls to p01= 2. a) Find the substitution, income, and total effect for good 1. b) Find the substitution, income, and total effect for good 2. c) Verify that the Slutsky equation holds for both goods
3. Suppose that a consumer has a utility function given by U(X,Y) = X^.5Y^.5 . Consider...
3. Suppose that a consumer has a utility function given by U(X,Y) = X^.5Y^.5 . Consider the following bundles of goods: A = (9, 4), B = (16, 16), C = (1, 36). a. Calculate the consumer’s utility level for each bundle of goods. b. Specify the preference ordering for the bundles using the “strictly preferred to” symbol and the “indifferent to” symbol. c. Now, take the natural log of the utility function. Calculate the new utility level provided by...
Consider a consumer whose preferences over the goods are represented by the utility function U(x,y) =...
Consider a consumer whose preferences over the goods are represented by the utility function U(x,y) = xy^2. Recall that for this function the marginal utilities are given by MUx(x, y) = y^2 and MUy(x, y) = 2xy. (a) What are the formulas for the indifference curves corresponding to utility levels of u ̄ = 1, u ̄ = 4, and u ̄ = 9? Draw these three indifference curves in one graph. (b) What is the marginal rate of substitution...
Consider a consumer whose utility function is u(x, y) = x + y (perfect substitutes) a....
Consider a consumer whose utility function is u(x, y) = x + y (perfect substitutes) a. Assume the consumer has income $120 and initially faces the prices px = $1 and py = $2. How much x and y would they buy? b. Next, suppose the price of x were to increase to $4. How much would they buy now?    c. Decompose the total effect of the price change on demand for x into the substitution effect and the...
1. Suppose utility for a consumer over food(x) and clothing(y) is represented by u(x,y) = 915xy....
1. Suppose utility for a consumer over food(x) and clothing(y) is represented by u(x,y) = 915xy. Find the optimal values of x and y as a function of the prices px and py with an income level m. px and py are the prices of good x and y respectively. 2. Consider a utility function that represents preferences: u(x,y) = min{80x,40y} Find the optimal values of x and y as a function of the prices px and py with an...
The utility function U(X,Y)=XaY1-a where 0≤a≤1 is called the Cobb-Douglas utility function. MUx=aXa-1Y1-a MUy=(1-a)XaY-a (note for...
The utility function U(X,Y)=XaY1-a where 0≤a≤1 is called the Cobb-Douglas utility function. MUx=aXa-1Y1-a MUy=(1-a)XaY-a (note for those who know calculus MUx=∂U∂x and MUy=∂U∂y) Derive the demand functions for X and Y Are X and Y normal goods? If the quantity of the good increases with income a good is a normal good. If the quantity decreases with income the good is an inferior good. Describe in words the preferences corresponding to a=0, a=1, a=.5
Consider a consumer with preferences represented by the utility function u(x,y)=3x+6 sqrt(y) (a) Are these preferences...
Consider a consumer with preferences represented by the utility function u(x,y)=3x+6 sqrt(y) (a) Are these preferences strictly convex? (b) Derive the marginal rate of substitution. (c) Suppose instead, the utility function is: u(x,y)=x+2 sqrt(y) Are these preferences strictly convex? Derive the marginal rate of substitution. (d) Are there any similarities or differences between the two utility functions?
A consumer has utility for protein bars and vitamin water summarized by the Cobb-Douglas utility function...
A consumer has utility for protein bars and vitamin water summarized by the Cobb-Douglas utility function U(qB,qW) = qBqW. e. Find the consumer’s Engel curve for vitamin water when PB = PW = 1. f. What is the consumer’s optimal bundle when M = 100 and PB = PW = 1? Suppose the price of protein bars increases to P’B = 2. g. Find the new optimal bundle. h. Find the substitution effect of the price increase on purchases of...
A consumer likes two goods; good 1 and good 2. the consumer’s preferences are described the...
A consumer likes two goods; good 1 and good 2. the consumer’s preferences are described the by the cobb-douglass utility function U = (c1,c2) = c1α,c21-α Where c1 denotes consumption of good 1, c2 denotes consumption of good 2, and parameter α lies between zero and one; 1>α>0. Let I denote consumer’s income, let p1 denotes the price of good 1, and p2 denotes the price of good 2. Then the consumer can be viewed as choosing c1 and c2...
Consider a consumer with preferences represented by the utility function: U(x,y) = 3x + 6 √...
Consider a consumer with preferences represented by the utility function: U(x,y) = 3x + 6 √ y   Are these preferences strictly convex? Derive the marginal rate of substitution Suppose, the utility function is: U(x,y) = -x +2 √ y   Are there any similarities or differences between the two utility functions?
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT