Question

Take the following graph: G(V, E) where V = {A, B, C, D, E} E =...

Take the following graph:

G(V, E)

where V = {A, B, C, D, E} E = { {A,B}, {B,C}, {C, A}. {B, D}, {B, E}, {D, E}}

is this graph directed or undirected?

write down the degree of each vertex.

write down all the cycles in this graph.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Prove that if deg(v) ≤ 4 for all vertices in an (undirected) graph G = (V,...
Prove that if deg(v) ≤ 4 for all vertices in an (undirected) graph G = (V, E), then we can orient all edges in E such that the in-degree of every vertex is at most 2.
You are given a directed acyclic graph G(V,E), where each vertex v that has in-degree 0...
You are given a directed acyclic graph G(V,E), where each vertex v that has in-degree 0 has a value value(v) associated with it. For every other vertex u in V, define Pred(u) to be the set of vertices that have incoming edges to u. We now define value(u) = ?v∈P red(u) value(v). Design an O(n + m) time algorithm to compute value(u) for all vertices u where n denotes the number of vertices and m denotes the number of edges...
Problem 2. Consider a graph G = (V,E) where |V|=n. 2(a) What is the total number...
Problem 2. Consider a graph G = (V,E) where |V|=n. 2(a) What is the total number of possible paths of length k ≥ 0 in G from a given starting vertex s and ending vertex t? Hint: a path of length k is a sequence of k + 1 vertices without duplicates. 2(b) What is the total number of possible paths of any length in G from a given starting vertex s and ending vertex t? 2(c) What is the...
Consider an undirected graph G = (V, E) with an injective cost function c: E →...
Consider an undirected graph G = (V, E) with an injective cost function c: E → N. Suppose T is a minimum spanning tree of G for cost function c. If we replace each edge cost c(e), e ∈ E, with cost c'(e) = c(e)2 for G, is T still a minimum spanning tree of G? Briefly justify your answer.
Suppose that we generate a random graph G = (V, E) on the vertex set V...
Suppose that we generate a random graph G = (V, E) on the vertex set V = {1, 2, . . . , n} in the following way. For each pair of vertices i, j ∈ V with i < j, we flip a fair coin, and we include the edge i−j in E if and only if the coin comes up heads. How many edges should we expect G to contain? How many cycles of length 3 should we...
# Problem Description Given a directed graph G = (V,E) with edge length l(e) > 0...
# Problem Description Given a directed graph G = (V,E) with edge length l(e) > 0 for any e in E, and a source vertex s. Use Dijkstra’s algorithm to calculate distance(s,v) for all of the vertices v in V. (You can implement your own priority queue or use the build-in function for C++/Python) # Input The graph has `n` vertices and `m` edges. There are m + 1 lines, the first line gives three numbers `n`,`m` and `s`(1 <=...
Given a directed acyclic graph G= (V,E), vertex s∈V, design a dynamic programming algorithm to compute...
Given a directed acyclic graph G= (V,E), vertex s∈V, design a dynamic programming algorithm to compute the number of distinct paths from s to v for any v∈V. 1. Define subproblems 2. Write recursion 3. Give the pseudo-code 4. Analyze the running time.
Let G = (V,E) be a graph with n vertices and e edges. Show that the...
Let G = (V,E) be a graph with n vertices and e edges. Show that the following statements are equivalent: 1. G is a tree 2. G is connected and n = e + 1 3. G has no cycles and n = e + 1 4. If u and v are vertices in G, then there exists a unique path connecting u and v.
A K-regular graph G is a graph such that deg(v) = K for all vertices v...
A K-regular graph G is a graph such that deg(v) = K for all vertices v in G. For example, c_9 is a 2-regular graph, because every vertex has degree 2. For some K greater than or equal to 2, neatly draw a simple K-regular graph that has a bridge. If it is impossible, prove why.
Prove the following bound for the independence number. If G is a n-vertex graph with e...
Prove the following bound for the independence number. If G is a n-vertex graph with e edges and maximum degree ∆ > 0, then α(G) ≤ n − e/∆.
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT