Question

Prove the following bound for the independence number. If G is a n-vertex graph with e...

Prove the following bound for the independence number.

If G is a n-vertex graph with e edges and maximum degree ∆ > 0, then

α(G) ≤ n − e/∆.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Let G be a graph or order n with independence number α(G) = 2. (a) Prove...
Let G be a graph or order n with independence number α(G) = 2. (a) Prove that if G is disconnected, then G contains K⌈ n/2 ⌉ as a subgraph. (b) Prove that if G is connected, then G contains a path (u, v, w) such that uw /∈ E(G) and every vertex in G − {u, v, w} is adjacent to either u or w (or both).
Prove or disapprove each of the following: (a) Every disconnected graph has an isolated vertex. (b)...
Prove or disapprove each of the following: (a) Every disconnected graph has an isolated vertex. (b) A graph is connected if and only if some vertex is connected to all other vertices. (c) If G is a simple, connected, Eulerian graph, with edges e, f that are incident to a common vertex, then G has an Eulerian circuit in which e and f appear consequently.
You are given a directed acyclic graph G(V,E), where each vertex v that has in-degree 0...
You are given a directed acyclic graph G(V,E), where each vertex v that has in-degree 0 has a value value(v) associated with it. For every other vertex u in V, define Pred(u) to be the set of vertices that have incoming edges to u. We now define value(u) = ?v∈P red(u) value(v). Design an O(n + m) time algorithm to compute value(u) for all vertices u where n denotes the number of vertices and m denotes the number of edges...
Let G be an n-vertex graph with n ≥ 2 and δ(G) ≥ (n-1)/2. Prove that...
Let G be an n-vertex graph with n ≥ 2 and δ(G) ≥ (n-1)/2. Prove that G is connected and that the diameter of G is at most two.
Prove that if deg(v) ≤ 4 for all vertices in an (undirected) graph G = (V,...
Prove that if deg(v) ≤ 4 for all vertices in an (undirected) graph G = (V, E), then we can orient all edges in E such that the in-degree of every vertex is at most 2.
Let G be a simple graph in which all vertices have degree four. Prove that it...
Let G be a simple graph in which all vertices have degree four. Prove that it is possible to color the edges of G orange or blue so that each vertex is adjacent to two orange edges and two blue edges. Hint: The graph G has a closed Eulerian walk. Walk along it and color the edges alternately orange and blue.
If G is an n-vertex r-regular graph, then show that n/(1+r)≤ α(G) ≤n/2.
If G is an n-vertex r-regular graph, then show that n/(1+r)≤ α(G) ≤n/2.
Graph G is a connected planar graph with 1 face. If G is finite, prove that...
Graph G is a connected planar graph with 1 face. If G is finite, prove that there is a vertex with degree 1.
Suppose that we generate a random graph G = (V, E) on the vertex set V...
Suppose that we generate a random graph G = (V, E) on the vertex set V = {1, 2, . . . , n} in the following way. For each pair of vertices i, j ∈ V with i < j, we flip a fair coin, and we include the edge i−j in E if and only if the coin comes up heads. How many edges should we expect G to contain? How many cycles of length 3 should we...
Graph Theory Let v be a vertex of a non trivial graph G. prove that if...
Graph Theory Let v be a vertex of a non trivial graph G. prove that if G is connected, then v has a neighbor in every component of G-v.