Question

A K-regular graph G is a graph such that deg(v) = K for all vertices v...

A K-regular graph G is a graph such that deg(v) = K for all vertices v in G. For example, c_9 is a 2-regular graph, because every vertex has degree 2. For some K greater than or equal to 2, neatly draw a simple K-regular graph that has a bridge. If it is impossible, prove why.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Prove that if deg(v) ≤ 4 for all vertices in an (undirected) graph G = (V,...
Prove that if deg(v) ≤ 4 for all vertices in an (undirected) graph G = (V, E), then we can orient all edges in E such that the in-degree of every vertex is at most 2.
a graph is regular of degree k if every vertex has the same degree, k. show...
a graph is regular of degree k if every vertex has the same degree, k. show that G has a hamiltonian circuit if G has 13 vertices and is regular of degree 6.
a. A graph is called k-regular if every vertex has degree k. Explain why any k-regular...
a. A graph is called k-regular if every vertex has degree k. Explain why any k-regular graph with 11 vertices must conain an Euler circuit. (Hint – think of the possible values of k). b. If G is a 6-regular graph, what is the chromatic number of G? Must it be 6? Explain
Graph Theory. A simple graph G with 7 vertices and 10 edges has the following properties:...
Graph Theory. A simple graph G with 7 vertices and 10 edges has the following properties: G has six vertices of degree a and one vertex of degree b. Find a and b, and draw the graph. Show all work.
Suppose we are going to color the vertices of a connected planar simple graph such that...
Suppose we are going to color the vertices of a connected planar simple graph such that no two adjacent vertices are with the same color. (a) Prove that if G is a connected planar simple graph, then G has a vertex of degree at most five. (b) Prove that every connected planar simple graph can be colored using six or fewer colors.
Let G be a simple planar graph with fewer than 12 vertices. a) Prove that m...
Let G be a simple planar graph with fewer than 12 vertices. a) Prove that m <=3n-6; b) Prove that G has a vertex of degree <=4. Solution: (a) simple --> bdy >=3. So 3m - 3n + 6 = 3f <= sum(bdy) = 2m --> m - 3n + 6 <=0 --> m <= 3n - 6. So for part a, how to get bdy >=3 and 2m? I need a detailed explanation b) Assume all deg >= 5...
Q. a graph is called k-planar if every vertex has degree k. (a) Explain why any...
Q. a graph is called k-planar if every vertex has degree k. (a) Explain why any k-regular graph with 11 vertices should contain an Euler’s circuit. (what are the possible values of k). (b) Suppose G is a 6-regular graph. Must the chromatic number of G be at leat 6? Explain.
Draw an undirected graph with 6 vertices that has an Eulerian Cycle and a Hamiltonian Cycle.  The...
Draw an undirected graph with 6 vertices that has an Eulerian Cycle and a Hamiltonian Cycle.  The degree of each vertex must be greater than 2.  List the degrees of the vertices, draw the Hamiltonian Cycle on the graph and give the vertex list of the Eulerian Cycle. Draw a Bipartite Graph with 10 vertices that has an Eulerian Path and a Hamiltonian Cycle.  The degree of each vertex must be greater than 2.  List the degrees of the vertices, draw the Hamiltonian Cycle...
Let G be a simple graph in which all vertices have degree four. Prove that it...
Let G be a simple graph in which all vertices have degree four. Prove that it is possible to color the edges of G orange or blue so that each vertex is adjacent to two orange edges and two blue edges. Hint: The graph G has a closed Eulerian walk. Walk along it and color the edges alternately orange and blue.
Let G be a simple graph with at least two vertices. Prove that there are two...
Let G be a simple graph with at least two vertices. Prove that there are two distinct vertices x, y of G such that deg(x)= deg(y).