// C++ implementation for the above approach
#include <bits/stdc++.h>
using namespace std;
#define INF 0x3f3f3f3f
// iPair ==> Integer Pair
typedef pair<int, int> iPair;
// This class represents a directed graph using
// adjacency list representation
class Graph {
int V; // No. of vertices
// In a weighted graph, we need to store vertex
// and weight pair for every edge
list<pair<int, int> >* adj;
public:
Graph(int V); // Constructor
// function to add an reverse edge to graph
void addEdgeRev(int u, int v, int w);
// prints shortest distance from all
// vertex to the given destination vertex
void shortestPath(int s);
};
// Allocates memory for adjacency list
Graph::Graph(int V)
{
this->V = V;
adj = new list<iPair>[V];
}
void Graph::addEdgeRev(int u, int v, int w)
{
adj[v].push_back(make_pair(u, w));
}
// Prints shortest distance from all vertex to
// the given destination vertex
void Graph::shortestPath(int dest)
{
// Create a priority queue to store vertices that
// are being preprocessed. This is weird syntax in C++.
// Refer below link for details of this syntax
// https:// www.geeksforgeeks.org/implement-min-heap-using-stl/
priority_queue<iPair, vector<iPair>, greater<iPair> > pq;
// Create a vector for distances and initialize all
// distances as infinite (INF)
vector<int> dist(V, INF);
// Insert destination itself in priority queue and initialize
// its distance as 0.
pq.push(make_pair(0, dest));
dist[dest] = 0;
/* Looping till priority queue becomes empty (or all
distances are not finalized) */
while (!pq.empty()) {
// The first vertex in pair is the minimum distance
// vertex, extract it from priority queue.
// vertex label is stored in second of pair (it
// has to be done this way to keep the vertices
// sorted distance (distance must be first item
// in pair)
int u = pq.top().second;
pq.pop();
// 'i' is used to get all adjacent vertices of a vertex
list<pair<int, int> >::iterator i;
for (i = adj[u].begin(); i != adj[u].end(); ++i) {
// Get vertex label and weight of current adjacent
// of u.
int v = (*i).first;
int weight = (*i).second;
// If there is shorted path to v through u.
if (dist[v] > dist[u] + weight) {
// Updating distance of v
dist[v] = dist[u] + weight;
pq.push(make_pair(dist[v], v));
}
}
}
// Print shortest distances stored in dist[]
printf("Destination Vertex Distance "
"from all vertex\n");
for (int i = 0; i < V; ++i)
printf("%d \t\t %d\n", i, dist[i]);
}
// Driver program to test methods of graph class
int main()
{
// create the graph given in above figure
int V = 5;
Graph g(V);
// adding edges in reverse direction
g.addEdgeRev(0, 2, 1);
g.addEdgeRev(0, 4, 5);
g.addEdgeRev(1, 4, 1);
g.addEdgeRev(2, 0, 10);
g.addEdgeRev(2, 3, 5);
g.addEdgeRev(3, 1, 1);
g.addEdgeRev(4, 0, 5);
g.addEdgeRev(4, 2, 100);
g.addEdgeRev(4, 3, 5);
g.shortestPath(0);
return 0;
}
Get Answers For Free
Most questions answered within 1 hours.