Question

Let the KB consist of the following sentences: 1. P ⇒ ( Q ∨ R) 2....

Let the KB consist of the following sentences:

1. P ⇒ ( Q ∨ R)

2. S ⇒ ¬Q

3. P

4. S

Prove that R holds using inference rules.

Homework Answers

Answer #1

Using Modus Ponens,

P, P => (Q v R) <=> Q v R

Again, using Modus Ponens, we have

S, S => ¬Q <=> ¬Q

Hence, we are left with sentences:

1. Q v R

2. ¬Q

Now, Q v R is equivalent to ¬Q => R.

Again using Modus Ponens, we ge

¬Q, ¬Q => R. <=> R (proved)

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Using rules of inference prove. (P -> R) -> ( (Q -> R) -> ((P v...
Using rules of inference prove. (P -> R) -> ( (Q -> R) -> ((P v Q) -> R) ) Justify each step using rules of inference.
1. Construct a truth table for: (¬p ∨ (p → ¬q)) → (¬p ∨ ¬q) 2....
1. Construct a truth table for: (¬p ∨ (p → ¬q)) → (¬p ∨ ¬q) 2. Give a proof using logical equivalences that (p → q) ∨ (q → r) and (p → r) are not logically equivalent. 3.Show using a truth table that (p → q) and (¬q → ¬p) are logically equivalent. 4. Use the rules of inference to prove that the premise p ∧ (p → ¬q) implies the conclusion ¬q. Number each step and give the...
Prove using rules of inference: ?(?indy) ∀x(S(x) <-> Q(x)) ∀x(Q(x) ʌ R(x)) R(Cindy)
Prove using rules of inference: ?(?indy) ∀x(S(x) <-> Q(x)) ∀x(Q(x) ʌ R(x)) R(Cindy)
p → q, r → s ⊢ p ∨ r → q ∨ s Solve using...
p → q, r → s ⊢ p ∨ r → q ∨ s Solve using natural deduction rules.
1. Prove p∧q=q∧p 2. Prove[((∀x)P(x))∧((∀x)Q(x))]→[(∀x)(P(x)∧Q(x))]. Remember to be strict in your treatment of quantifiers .3. Prove...
1. Prove p∧q=q∧p 2. Prove[((∀x)P(x))∧((∀x)Q(x))]→[(∀x)(P(x)∧Q(x))]. Remember to be strict in your treatment of quantifiers .3. Prove R∪(S∩T) = (R∪S)∩(R∪T). 4.Consider the relation R={(x,y)∈R×R||x−y|≤1} on Z. Show that this relation is reflexive and symmetric but not transitive.
Proposition: If P⟹Q and Q⟹R are theorems, then P⟹R is also a theorem. (not using a...
Proposition: If P⟹Q and Q⟹R are theorems, then P⟹R is also a theorem. (not using a truth table only using rules 1-4, theorem 1 and axioms 1-4) Hilbert system
3. Assume √2 ∈R. Let S = { rational numbers q : q < √2 }....
3. Assume √2 ∈R. Let S = { rational numbers q : q < √2 }. (a)(i) Show that S is nonempty. (ii) Prove that S is bounded from above, but is not bounded from below. (b) Prove that supS = √2.
Prove a)p→q, r→s⊢p∨r→q∨s b)(p ∨ (q → p)) ∧ q ⊢ p
Prove a)p→q, r→s⊢p∨r→q∨s b)(p ∨ (q → p)) ∧ q ⊢ p
Use the laws of propositional logic to prove the following: 1) (p ∧ q ∧ ¬r)...
Use the laws of propositional logic to prove the following: 1) (p ∧ q ∧ ¬r) ∨ (p ∧ ¬q ∧ ¬r) ≡ p ∧ ¬r 2) (p ∧ q) → r ≡ (p ∧ ¬r) → ¬q
Let p and q be any two distinct prime numbers and define the relation a R...
Let p and q be any two distinct prime numbers and define the relation a R b on integers a,b by: a R b iff b-a is divisible by both p and q. For this relation R: Prove that R is an equivalence relation. you may use the following lemma: If p is prime and p|mn, then p|m or p|n
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT