Question

Let p and q be any two distinct prime numbers and define the relation a R...

Let p and q be any two distinct prime numbers and define the relation a R b on integers a,b by: a R b iff b-a is divisible by both p and q. For this relation R: Prove that R is an equivalence relation.

you may use the following lemma: If p is prime and p|mn, then p|m or p|n

Homework Answers

Answer #1

if u have any questions please comment

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Let p and q be any two distinct prime numbers and define the relation a R...
Let p and q be any two distinct prime numbers and define the relation a R b on integers a,b by: a R b iff b-a is divisible by both p and q. For this relation R: Show that the equivalence classes of R correspond to the elements of  ℤpq. That is: [a] = [b] as equivalence classes of R if and only if [a] = [b] as elements of ℤpq. you may use the following lemma: If p is prime...
Let p and q be any two distinct prime numbers and define the relation a R...
Let p and q be any two distinct prime numbers and define the relation a R b on integers a,b by: a R b iff b-a is divisible by both p and q. I need to prove that: a) R is an equivalence relation. (which I have) b) The equivalence classes of R correspond to the elements of  ℤpq. That is: [a] = [b] as equivalence classes of R if and only if [a] = [b] as elements of ℤpq I...
Let X be finite set . Let R be the relation on P(X). A,B∈P(X) A R...
Let X be finite set . Let R be the relation on P(X). A,B∈P(X) A R B Iff |A|=|B| prove R is an equivalence relation
Let p,q be prime numbers, not necessarily distinct. If a group G has order pq, prove...
Let p,q be prime numbers, not necessarily distinct. If a group G has order pq, prove that any proper subgroup (meaning a subgroup not equal to G itself) must be cyclic. Hint: what are the possible sizes of the subgroups?
2. Define a relation R on pairs of real numbers as follows: (a, b)R(c, d) iff...
2. Define a relation R on pairs of real numbers as follows: (a, b)R(c, d) iff either a < c or both a = c and b ≤ d. Is R a partial order? Why or why not? If R is a partial order, draw a diagram of some of its elements. 3. Define a relation R on integers as follows: mRn iff m + n is even. Is R a partial order? Why or why not? If R is...
Let R be the relation on Z defined by: For any a, b ∈ Z ,...
Let R be the relation on Z defined by: For any a, b ∈ Z , aRb if and only if 4 | (a + 3b). (a) Prove that R is an equivalence relation. (b) Prove that for all integers a and b, aRb if and only if a ≡ b (mod 4)
1. Let p be any prime number. Let r be any integer such that 0 <...
1. Let p be any prime number. Let r be any integer such that 0 < r < p−1. Show that there exists a number q such that rq = 1(mod p) 2. Let p1 and p2 be two distinct prime numbers. Let r1 and r2 be such that 0 < r1 < p1 and 0 < r2 < p2. Show that there exists a number x such that x = r1(mod p1)andx = r2(mod p2). 8. Suppose we roll...
Let A = {−5, −4, −3, −2, −1, 0, 1, 2, 3} and define a relation...
Let A = {−5, −4, −3, −2, −1, 0, 1, 2, 3} and define a relation R on A as follows: For all (m, n) is in A, m R n ⇔ 5|(m2 − n2). It is a fact that R is an equivalence relation on A. Use set-roster notation to list the distinct equivalence classes of R. (Enter your answer as a comma-separated list of sets.) ____________
a) Let R be an equivalence relation defined on some set A. Prove using induction that...
a) Let R be an equivalence relation defined on some set A. Prove using induction that R^n is also an equivalence relation. Note: In order to prove transitivity, you may use the fact that R is transitive if and only if R^n⊆R for ever positive integer ​n b) Prove or disprove that a partial order cannot have a cycle.
Let R be a relation on set RxR of ordered pairs of real numbers such that...
Let R be a relation on set RxR of ordered pairs of real numbers such that (a,b)R(c,d) if a+d=b+c. Prove that R is an equivalence relation and find equivalence class [(0,b)]R
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT