Question

Design the shown beam; if it is given that Dead load, wd = 15 kN/m Live...

Design the shown beam; if it is given that

Dead load, wd = 15 kN/m

Live load,   wL = 10 kN/m

Beam breadth b = 300 mm  

Beam height, h = ℓ/21 mm    

where; Span, = 9;  and S is the student serial number according to the following table. Use; fc = 35 Mpa and fy = 420 Mpa.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A rectangular beam having b=300 mm and d=575 mm, spans 5.5 m face to face of...
A rectangular beam having b=300 mm and d=575 mm, spans 5.5 m face to face of simple supports. It is reinforced for flexure with 4φ32 bars that continue uninterrupted to the ends of the span. It is to carry a service dead load wD=30 kN/m (including self-weight) and a service live load =45 kN/m both uniformly distributed along the span. Design the shear reinforcement using φ10 vertical U stirrups. Use the equation (a) for Vc. Material strengths are fc’=22 and...
Design a T Beam for s floor system. Thickness of slab is 75 mm and width...
Design a T Beam for s floor system. Thickness of slab is 75 mm and width of the web is 375 mm, with an effective depth of 600 mm. The beam carries a dead load moment of 270 KN m and a live load moment of 460 KN m. The beam has a span of 5.4 m and has a spacing center to center equal to 1.8 m, fc’ = 20.7 MPa, fy = 345 MPa.
Design a wall footing to support a 300 mm reinforced concrete wall with dead load of...
Design a wall footing to support a 300 mm reinforced concrete wall with dead load of 292KN/m and live load of 200 KN/m. The bottom of the footing is 1.20 m below the final grade, the soil weighs 15,700 N/m3. The allowable soil pressure is 190 Kpa. fy = 276.5 Mpa, fc’ = 27.6 Mpa.
A simply supported beam of 6m length carries a dead load of 10 kn/m and live...
A simply supported beam of 6m length carries a dead load of 10 kn/m and live load of 8 kn/m. It also support a point dead load of 60Kn at the centre. Using the formula calculate the moment modification factor.
A 5.3m long simply supported beam is subjected to a dead load of 23 and live...
A 5.3m long simply supported beam is subjected to a dead load of 23 and live load of 28 kN/m. If the beam has width, height and concrete cover of 25cm, 50cm and 3cm respectively, design this beam. Use C25 and S220. (if required; k1=0.85 and d’’=2cm)
A 1200 mm deep by 750 mm wide post-tensioned simply supported beam is shown below. The...
A 1200 mm deep by 750 mm wide post-tensioned simply supported beam is shown below. The beam spans 12.0 m and is subject to a superimposed dead load of 50 kN/m and a live load of 35 kN/m. Both the superimposed dead load and live load are applied after transfer (after stressing has taken place). The tendon is located at the mid-height of the beam at each end, and its centreline sits 50 mm from the base at midspan. The...
A concrete beam similar to that shown in Figure 13.18 sustains a uniform live load of...
A concrete beam similar to that shown in Figure 13.18 sustains a uniform live load of 1.5 klf and a uniform dead load of 1 klf on a span of 20ft. Determine the layout for a set of No. 3 U-stirrups using the stress method with fy = 40 ksi and f ′ c = 3000 psi. The beam section dimensions are b = 10 in. and d = 23 in.
analyse, design and report on a viable longitudinal span and beam, suspend slab design and column...
analyse, design and report on a viable longitudinal span and beam, suspend slab design and column slenderness.Design constraints for this individual concrete beam include using simply supported (fixed connected), non-continuous beam design and will not require any pre stressed beam design based on AS3600-2009. Support beams have a uniformly distributed imposed load of 15 kN/m  Density of RCC,ρ = 2600 kg/m3  Live Load on Slab = 4kN/m  Dead Load on Slab = 3kN/m  Yield Strength of...
The beam is subjected to a uniformly distributed load w= 12 kN/m. The beam is a...
The beam is subjected to a uniformly distributed load w= 12 kN/m. The beam is a two-span continuous beam. The length of each span is L = 2 m. The beam is made of steel. Young's modulus (E) of steel is 200 GPa. The value of the moment of inertia is 21 * 106 mm4. Use the force method given in Week 6. Determine the reaction at the middle support B. Select one: a. 6.00 kN b. 18.00 kN c....
A simply supported beam is 3 m long. It carries a uniformly distributed load of 6...
A simply supported beam is 3 m long. It carries a uniformly distributed load of 6 kN/m throughout its span and a concentrated load of 15 kN at a point 2 m from the left support. Assuming that the beam has a rectangular shape whose width and depth are 150 mm and 250 mm, respectively. Determine the maximum flexural stress in MPa developed in the beam.
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT