Question

Design a wall footing to support a 300 mm reinforced concrete wall with dead load of...

Design a wall footing to support a 300 mm reinforced concrete wall with dead load of 292KN/m and live load of 200 KN/m. The bottom of the footing is 1.20 m below the final grade, the soil weighs 15,700 N/m3. The allowable soil pressure is 190 Kpa. fy = 276.5 Mpa, fc’ = 27.6 Mpa.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A reinforced concrete square column (0.26m × 0.26m) is supported by a square isolated footing (spread...
A reinforced concrete square column (0.26m × 0.26m) is supported by a square isolated footing (spread footing). The footing is of plain concrete, and concentrically loaded. An engineer has suggested 1.25m × 1.25m footing. First, check the sufficiency of footing dimension. If it is not sufficient, design the footing in accordance with the requirements of ACI 318M-08 and using the following available data: Net allowable soil pressure: net qa = 170 kPa Column loads (unfactored): D = 160 kN L...
CE Board May 2012 A 450 mm square interior column carries a dead load of 825...
CE Board May 2012 A 450 mm square interior column carries a dead load of 825 KN and a live load of 668 KN. A rectangular footing is required to carry the column loads such that the length of the long side must be equal to twice the width of the short side. Assume base of footing is 1.5 m below the ground surface. Allowable bearing pressure of soil is 15.74 KN/m3 and that of concrete is 23.5 KN/m3. Use...
Design the shown beam; if it is given that Dead load, wd = 15 kN/m Live...
Design the shown beam; if it is given that Dead load, wd = 15 kN/m Live load,   wL = 10 kN/m Beam breadth b = 300 mm   Beam height, h = ℓ/21 mm     where; Span, ℓ = 9;  and S is the student serial number according to the following table. Use; fc = 35 Mpa and fy = 420 Mpa.
In attempting to derive a rule of thumb for the thickness of a wall footing, it...
In attempting to derive a rule of thumb for the thickness of a wall footing, it can be shown that h = a Pu-b, where h = required thickness of wall footing in mm, Pu = ultimate load in kN/m. If the allowable bearing capacity of soil = 248 kN/m2, f'c =28 MPa and average load factor = 1.37, determine the factor a in the above rule of thumb.
A rectangular beam having b=300 mm and d=575 mm, spans 5.5 m face to face of...
A rectangular beam having b=300 mm and d=575 mm, spans 5.5 m face to face of simple supports. It is reinforced for flexure with 4φ32 bars that continue uninterrupted to the ends of the span. It is to carry a service dead load wD=30 kN/m (including self-weight) and a service live load =45 kN/m both uniformly distributed along the span. Design the shear reinforcement using φ10 vertical U stirrups. Use the equation (a) for Vc. Material strengths are fc’=22 and...
Design a T Beam for s floor system. Thickness of slab is 75 mm and width...
Design a T Beam for s floor system. Thickness of slab is 75 mm and width of the web is 375 mm, with an effective depth of 600 mm. The beam carries a dead load moment of 270 KN m and a live load moment of 460 KN m. The beam has a span of 5.4 m and has a spacing center to center equal to 1.8 m, fc’ = 20.7 MPa, fy = 345 MPa.
Determine the allowable design load for a column resting on a rectangular footing 2 m by...
Determine the allowable design load for a column resting on a rectangular footing 2 m by 9 m, buried to a depth of 2 m in clay soil with a unit weight of 18.5 kN/m3, internal friction of 39 degrees, a drained cohesion of 36 kPa and undrained shear strength of 119 kPa. Assume the short-term condition governs, water table is at the ground surface and use a factor of safety of 3. Provide your answer in kN as a...
Design a simply supported one-way reinforced concrete floor slab to span 12 ft and carry a...
Design a simply supported one-way reinforced concrete floor slab to span 12 ft and carry a service live load of 180 psf and a service dead load of 20 psf. Use fc’=3000 psi and fy=60,000 psi. Make the slab thickness to 1⁄2 inch increments. (Hint: Design the slab according to the ACI Code minimum thickness)
Reinforced Concrete By using method 3 of ACI code, design a corner slab panel ( 4m...
Reinforced Concrete By using method 3 of ACI code, design a corner slab panel ( 4m x 5.7m ) of a frame building . Use f'c=21MPa, fy=276 MPa, γc=24 kN/m3 and WL=7 kN/m2 . Draw the final design. pls quickly
A wall is supported on a 1.0 m wide strip footing located 1.5 m below the...
A wall is supported on a 1.0 m wide strip footing located 1.5 m below the ground surface. The surrounding soil has a dry unit weight of 17.5 kN/m3, a saturated unit weight of 19.0 kN/m3, cohesion of 8 kPa and angle of internal friction of 26°. Groundwater was located 2m below ground surface. Using a factor of safety of 3, determine the allowable bearing capacity if a) the footing is considered infinitely long, and b) the footing is 8...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT