Question

A 5.3m long simply supported beam is subjected to a dead load of 23 and live...

A 5.3m long simply supported beam is subjected to a dead load of 23 and live load of 28 kN/m. If the beam has width, height and concrete cover of 25cm, 50cm and 3cm respectively, design this beam. Use C25 and S220. (if required; k1=0.85 and d’’=2cm)

Homework Answers

Answer #1

Complete solution is given below.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Calculate the bending capacity of a simply supported concrete beam. Beam is 6m long and supporting...
Calculate the bending capacity of a simply supported concrete beam. Beam is 6m long and supporting dead load of 20KN/m and live load of 10KN/m. Compressive strength of the concrete is 25MPa and yield strength of rebars is 500MPa. Concrete beam is 300mm height 200mm width.
A simply supported beam of 6m length carries a dead load of 10 kn/m and live...
A simply supported beam of 6m length carries a dead load of 10 kn/m and live load of 8 kn/m. It also support a point dead load of 60Kn at the centre. Using the formula calculate the moment modification factor.
A simply supported beam is 3 m long. It carries a uniformly distributed load of 6...
A simply supported beam is 3 m long. It carries a uniformly distributed load of 6 kN/m throughout its span and a concentrated load of 15 kN at a point 2 m from the left support. Assuming that the beam has a rectangular shape whose width and depth are 150 mm and 250 mm, respectively. Determine the maximum flexural stress in MPa developed in the beam.
A 1200 mm deep by 750 mm wide post-tensioned simply supported beam is shown below. The...
A 1200 mm deep by 750 mm wide post-tensioned simply supported beam is shown below. The beam spans 12.0 m and is subject to a superimposed dead load of 50 kN/m and a live load of 35 kN/m. Both the superimposed dead load and live load are applied after transfer (after stressing has taken place). The tendon is located at the mid-height of the beam at each end, and its centreline sits 50 mm from the base at midspan. The...
A simply supported beam spans 20 ft and carries a uniformly distributed dead load of 0.8...
A simply supported beam spans 20 ft and carries a uniformly distributed dead load of 0.8 kips/ft including the beam self-weight and a live load of 2.3 kips/ft. Determine the required plastic section modulus and select the lightest weight Wshape to carry the moment. Consider only the limit state of yielding (Zone 1) and use A992 steel. Design by (a) LRFD and (b) ASD.
Design the shown beam; if it is given that Dead load, wd = 15 kN/m Live...
Design the shown beam; if it is given that Dead load, wd = 15 kN/m Live load,   wL = 10 kN/m Beam breadth b = 300 mm   Beam height, h = ℓ/21 mm     where; Span, ℓ = 9;  and S is the student serial number according to the following table. Use; fc = 35 Mpa and fy = 420 Mpa.
A rectangular RC beam is simply supported over a span of 8m and carries a dead...
A rectangular RC beam is simply supported over a span of 8m and carries a dead load of 15kN/m (including self-weight) and an imposed load of 8kN/m. The beam is 250mm wide and has an effective depth of 400mm. Grade 30 concrete is to be used. Determine if the beam should be singly reinforced or doubly reinforced.
A simply supported beam spans 30 ft. and carries a uniformly distributed dead load of 3.5...
A simply supported beam spans 30 ft. and carries a uniformly distributed dead load of 3.5 kip/ft,excluding the beam self-weight. Also, in addition, a concentrated dead load of 15 kips and a concentrated live load of 25kips, both act at the center of a 30 ft span.Select the lightest-weight W-Shape to carry the load(A992 steel). Use LRFD method.
. A simply supported beam has a width of 200mm and depth of 400mm is 4m...
. A simply supported beam has a width of 200mm and depth of 400mm is 4m long. It carries a uniformly distributed load of 20 kN/m over the whole beam and a point load of 40 kN at the center of the beam. Compute the maximum deflection if the maximum slope produced in the beam is 2× ??-3 radian.
2. A simply supported beam has a width of 200mm and depth of 400mm is 4m...
2. A simply supported beam has a width of 200mm and depth of 400mm is 4m long. It carries a uniformly distributed load of 20 kN/m over the whole beam and a point load of 40 kN at the center of the beam. Compute the maximum deflection if the maximum slope produced in the beam is 2× ??-3 radian.