Question

ΔGo = 775 kJ for the vaporization of boron carbide: B4C (s) = 4 B (g)...

ΔGo = 775 kJ for the vaporization of boron carbide:

B4C (s) = 4 B (g) + C (s)

Find ΔG and determine if the process is spontaneous if the reaction vessel contains 4.00 mol B4C(s), 0.400 mol of C(s), and B(g) at a partial pressure of 1.0 x 10-5 atm. At 2600 K, R T = 21.6 kJ.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
For the reaction A(g) + 2B(g) ↔ 2C(g) ΔGo = -34.6 kJ. What is the value...
For the reaction A(g) + 2B(g) ↔ 2C(g) ΔGo = -34.6 kJ. What is the value of ΔG in kJ at 25oC when the pressure of A is 1.3 atm, pressure of B is 1.5 atm, and the pressure of C is 2.7?
1. For the reaction A(g) + 2B(g) ↔ 2C(g) ΔGo = −30.6 kJ. What is the...
1. For the reaction A(g) + 2B(g) ↔ 2C(g) ΔGo = −30.6 kJ. What is the value of ΔG in kJ at 25oC when the pressure of A is 1.3 atm, pressure of B is 1.5 atm, and the pressure of C is 3.7?
Consider the following reaction: 2AgCl(s) → 2Ag(s) + Cl2(g); ΔH° = 127.1 kJ; ΔS° = 115.7...
Consider the following reaction: 2AgCl(s) → 2Ag(s) + Cl2(g); ΔH° = 127.1 kJ; ΔS° = 115.7 J/K at 298 K Suppose 59.4 g of silver(I) chloride is placed in a 63.1 L vessel at 298 K. What is the equilibrium partial pressure of chlorine gas? (R = 0.0821 L · atm/(K · mol) = 8.31 J/(K · mol)) A.5.7 × 10-17 atm B.0.95 atm C.5.1 × 10-23 atm D.0.081 atm E.0.16 atm
Use the thermodynamic data provided below to determine ΔG (in kJ/mol) for the vaporization of CaO...
Use the thermodynamic data provided below to determine ΔG (in kJ/mol) for the vaporization of CaO at 91.8 °C if the initial partial pressure of CaO is 1.76 atm. Report your answer to one decimal place in standard notation (i.e. 123.4 kJ/mol). Substance ΔH°f (kJ/mol) S° (J mol-1K-1) CaO (l) -557.3 62.3 CaO (g) 43.9 219.7
What is ΔGo (in kJ) at 464 K for the following reaction? PbO(g) + CO2(g) →...
What is ΔGo (in kJ) at 464 K for the following reaction? PbO(g) + CO2(g) → PbCO3(s) PbO: ΔHfo = -219.0 kJ/mol and So = 66.5 J/K mol) PbCO3(s): ΔHfo = -699.1 kJ/mol and So = 131.0 J/K mol) CO2: ΔHfo = -393.5 kJ/mol and So = 213.6 J/K mol)
1- Above what temperature is the following reaction spontaneous? N2O4(g) ↔ 2 NO2(g) ΔH° = 57.24...
1- Above what temperature is the following reaction spontaneous? N2O4(g) ↔ 2 NO2(g) ΔH° = 57.24 kJ/mol ΔS° = 175.5 J/mol∙K Group of answer choices 326 K 53.2 K 307 K 273 K 2- Predict the sign on ΔG for the following reaction when PI2 = PH2 = 0.01 atm and PHI = 1.0 atm. H2(g) + I2(g) ↔ 2 HI(g) ΔG° = -15.94 kJ/mol & Kp,298K = 620 Group of answer choices ΔG = 0 ΔG > 0 ΔG...
Consider the following reaction occurring at 298 K: N2O(g)+NO2(g)⇌3NO(g) Part A Show that the reaction is...
Consider the following reaction occurring at 298 K: N2O(g)+NO2(g)⇌3NO(g) Part A Show that the reaction is not spontaneous under standard conditions by calculating ΔG∘rxn. Part B If a reaction mixture contains only N2O and NO2 at partial pressures of 1.0 atm each, the reaction will be spontaneous until some NO forms in the mixture. What maximum partial pressure of NO builds up before the reaction ceases to be spontaneous? Part C Can the reaction be made more spontaneous by an...
1. Given the values of ΔGfo given below in kJ/mol, calculate the value of ΔGo in...
1. Given the values of ΔGfo given below in kJ/mol, calculate the value of ΔGo in kJ for the combustion of 1 mole of methane to form carbon dioxide and gaseous water. ΔGfo (CH4(g)) = -48 ΔGfo (CO2(g)) = -395 ΔGfo (H2O(g)) = -236 2. Given the values of So given below in J/mol K and of ΔHfo given in kJ/mol, calculate the value of ΔGo in kJ for the combustion of 1 mole of ethane to form carbon dioxide...
HgO(s) Hg(g) O2(g) Enthaply Delta H kj/mol -90.8 61.3 Entropy Delta S   j/mol. K 70.3 174.9...
HgO(s) Hg(g) O2(g) Enthaply Delta H kj/mol -90.8 61.3 Entropy Delta S   j/mol. K 70.3 174.9 205.0 Above is a table of thermodynamics date for the chemical species in the reaction: 2HgO(s) ----> 2Hg(g)+ O2(g) at 25 C A) Calculate the molar entropy of reaction at 25 C B) Calculate the standard Gibbs free enregy of the reaction at 25 C given that the enthaply of reaction at 25 C is 304.2 Kj/mol C)Calculate the equilibrium constant for the reaction...
Under standard conditions, the free energy of formation (ΔGof) of CO2 ­(g) is -394 kJ/mol. C...
Under standard conditions, the free energy of formation (ΔGof) of CO2 ­(g) is -394 kJ/mol. C (s) + O2 (g) → CO2 (g) Assuming the temperature remains 25 oC and the partial pressure of O2 (g) remains 1 atm, what would be the value of ΔG for this reaction when the partial pressure of CO2 ­(g) is 7.88 x 10-3 atm?
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT