Question

1- Above what temperature is the following reaction spontaneous? N2O4(g) ↔ 2 NO2(g) ΔH° = 57.24...

1- Above what temperature is the following reaction spontaneous?

N2O4(g) ↔ 2 NO2(g)

ΔH° = 57.24 kJ/mol ΔS° = 175.5 J/mol∙K

Group of answer choices

326 K

53.2 K

307 K

273 K

2- Predict the sign on ΔG for the following reaction when PI2 = PH2 = 0.01 atm and PHI = 1.0 atm.

H2(g) + I2(g) ↔ 2 HI(g) ΔG° = -15.94 kJ/mol & Kp,298K = 620

Group of answer choices

ΔG = 0

ΔG > 0

ΔG < 0

Not enough information

3- When will the following reaction be spontaneous?

N2O4(g) ↔ 2 NO2(g) ΔH° = 57.24 kJ/mol

Group of answer choices

At all temperatures

At high temperatures

This reaction is never spontaneous

At low temperatures

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Consider the reaction 2NO2(g)→N2O4(g) Calculate ΔG at 298 K if the partial pressures of NO2 and...
Consider the reaction 2NO2(g)→N2O4(g) Calculate ΔG at 298 K if the partial pressures of NO2 and N2O4 are 0.37 atm and 1.62 atm , respectively
The decomposition of NO2(g) occurs by the following bimolecular elementary reaction. 2 NO2(g) → 2 NO(g)...
The decomposition of NO2(g) occurs by the following bimolecular elementary reaction. 2 NO2(g) → 2 NO(g) + O2(g) The rate constant at 273 K is 2.3 ✕ 10-12 L/mol · s, and the activation energy is 111 kJ/mol. How long will it take for the concentration of NO2(g) to decrease from an initial partial pressure of 4.0 atm to 2.4 atm at 451 K? Assume ideal gas behavior.
1- Calculate ΔG o for the following reaction at 25°C. You will have to look up...
1- Calculate ΔG o for the following reaction at 25°C. You will have to look up the thermodynamic data. 2 C2H6(g) + 7 O2(g) → 4 CO2(g) + 6 H2O(l) 2- A reaction will be spontaneous only at low temperatures if both ΔH and ΔS are negative. For a reaction in which ΔH = −320.1 kJ/mol and ΔS = −99.00 J/K ·mol,determine the temperature (in °C)below which the reaction is spontaneous.
1. For the reaction A(g) + 2B(g) ↔ 2C(g) ΔGo = −30.6 kJ. What is the...
1. For the reaction A(g) + 2B(g) ↔ 2C(g) ΔGo = −30.6 kJ. What is the value of ΔG in kJ at 25oC when the pressure of A is 1.3 atm, pressure of B is 1.5 atm, and the pressure of C is 3.7?
Consider the following reaction occurring at 298 K: N2O(g)+NO2(g)⇌3NO(g) Part A Show that the reaction is...
Consider the following reaction occurring at 298 K: N2O(g)+NO2(g)⇌3NO(g) Part A Show that the reaction is not spontaneous under standard conditions by calculating ΔG∘rxn. Part B If a reaction mixture contains only N2O and NO2 at partial pressures of 1.0 atm each, the reaction will be spontaneous until some NO forms in the mixture. What maximum partial pressure of NO builds up before the reaction ceases to be spontaneous? Part C Can the reaction be made more spontaneous by an...
At a given temperature, Kp = 19 for the reaction, N2O4(g) <=> 2 NO2(g) For which...
At a given temperature, Kp = 19 for the reaction, N2O4(g) <=> 2 NO2(g) For which system is the value of Kp = 361? Please show work so I can figure out what I am doing wrong. Thank you!
At a particular temperature, Kp = 0.26 for the reaction below. N2O4(g) equilibrium reaction arrow 2...
At a particular temperature, Kp = 0.26 for the reaction below. N2O4(g) equilibrium reaction arrow 2 NO2(g) (a) A flask containing only N2O4 at an initial pressure of 4.9 atm is allowed to reach equilibrium. Calculate the equilibrium partial pressures of the gases. b) he volume of the container in part (a) is decreased to one-half the original volume. Calculate the new equilibrium partial pressures.
Consider the reaction at 298 K: N2 (g) + 2 O2 (g) --> 2 NO2 (g)...
Consider the reaction at 298 K: N2 (g) + 2 O2 (g) --> 2 NO2 (g) The value of ΔHo formation of NO2 (g) is known to be 34.0 kJ/mol, while the value of K is 5.86 x 10-19. Determine the absolute entropy of N2 (g) at 298 K if So O2 = 205 J/K mol and So NO2 = 240 J/K mol. (a) 76.3 J/K (b) 133 J/k (c) 190 J/K (d) 304 J/K (e) 507 J/K
Consider the reaction: 2 Cl2 (g) + 2 H2O (g) ↔ 4 HCl (g) + O2...
Consider the reaction: 2 Cl2 (g) + 2 H2O (g) ↔ 4 HCl (g) + O2 (g) ΔH = -184.36 kJ/mol At a certain temperature, Kp = 7.54 x 10-2. (A) If you mixed 0.100 mol Cl2, 0.100 mol H2O, 0.250 mol of HCl and 0.250 mol O2 in a one-liter container, in which direction would the reaction proceed? Explain. (B) In which direction would the reaction proceed if the pressure of the reaction mixture is increased? (C) In which...
Consider the oxidation of CO to CO2: CO(g)+12O2(g)→CO2(g) Reactant or product ΔH∘f(kJ/mol) S∘(J/mol⋅K) CO -110.5 197.7...
Consider the oxidation of CO to CO2: CO(g)+12O2(g)→CO2(g) Reactant or product ΔH∘f(kJ/mol) S∘(J/mol⋅K) CO -110.5 197.7 O2 0 205.2 CO2 -393.5 213.8 Part A Calculate ΔG∘rxn at 25∘C. Express your answer to one decimal place with the appropriate units. ΔG∘rxn = SubmitMy AnswersGive Up Incorrect; Try Again; 4 attempts remaining Your answer does not have the correct dimensions. Part B Determine whether the reaction is spontaneous at standard conditions. Determine whether the reaction is spontaneous at standard conditions. spontaneous nonspontaneous
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT