Question

Ten ice cubes of 2cm edge, at a temperature of -5°C are added to 1 liter...

Ten ice cubes of 2cm edge, at a temperature of -5°C are added to 1 liter of water at 20°C in a well-insulated thermos flask. What is the equilibrium temperature ? (Use: cp ice = 2.1 kJ/(kg °C), heat of fusion for ice: hice-water = 334kJ/kg, and cp water = 4.18 kJ/(kg °C)).

Homework Answers

Answer #1

1 ice cube volume= 8 cm³ so, 10 ice cubes are 80 cm³.

Density of ice = 0.9 g/cm³ then mass of ice = 80 cm³ * 0.9 g/cm³ = 72g or 0.072 kg.

Heat absorbed by ice before melting = 0.072 kg* 2.1 kJ/kg °C * 5 ° C = 0.76 kJ

Heat absorbed during melting = 0.072 kg* 334 kJ/kg = 24.0 kJ

Let equilibrium temperature be x ° C.

Heat absorbed = Heat lost

24 kJ + 0.76 kJ + 0.072 kg* 4.18 kJ/kg °C * (x-0 )°C = 1 kg* 4.18 kJ/kg ° C * (20-x) °C

=> 24.76 kJ + 0.3x kJ = 83.6 kJ - 4.18x kJ

=> 4.48x = 58.84

=> 13.13 °C

The equilibrium temperature is 13.13°C.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Chapter 18, Problem 041 (a) Two 58 g ice cubes are dropped into 410 g of...
Chapter 18, Problem 041 (a) Two 58 g ice cubes are dropped into 410 g of water in a thermally insulated container. If the water is initially at 20°C, and the ice comes directly from a freezer at -11°C, what is the final temperature at thermal equilibrium? (b) What is the final temperature if only one ice cube is used? The specific heat of water is 4186 J/kg·K. The specific heat of ice is 2220 J/kg·K. The latent heat of...
A 0.4-L glass of water at 20°C is to be cooled with ice to 5°C. The...
A 0.4-L glass of water at 20°C is to be cooled with ice to 5°C. The density of water is 1 kg/L, and the specific heat of water at room temperature is c = 4.18 kJ/kg·°C. The specific heat of ice at about 0°C is c = 2.11 kJ/kg·°C. The melting temperature and the heat of fusion of ice at 1 atm are 0°C and 333.7 kJ/kg. A) Determine how much ice needs to be added to the water, in...
Three 102.0-g ice cubes initially at 0°C are added to 0.810 kg of water initially at...
Three 102.0-g ice cubes initially at 0°C are added to 0.810 kg of water initially at 18.0°C in an insulated container. (a) What is the equilibrium temperature of the system? (b) What is the mass of unmelted ice, if any, when the system is at equilibrium?
A) Four ice cubes at exactly 0 ∘C with a total mass of 53.5 g are...
A) Four ice cubes at exactly 0 ∘C with a total mass of 53.5 g are combined with 140 g of water at 85 ∘Cin an insulated container. (ΔH∘fus=6.02 kJ/mol, cwater=4.18J/g⋅∘C) If no heat is lost to the surroundings, what is the final temperature of the mixture? B) A sample of steam with a mass of 0.510 g and at a temperature of 100 ∘C condenses into an insulated container holding 4.50 g of water at 2.0 ∘C.( ΔH∘vap=40.7 kJ/mol,...
An amount of energy is added to ice, raising its temperature from -10°C to -5°C. A...
An amount of energy is added to ice, raising its temperature from -10°C to -5°C. A larger amount of energy is added to the same mass of water, raising its temperature from 15°C to 20°C. From these results, what can we conclude? A.) Overcoming the latent heat of fusion of ice requires an input of energy. B.) The latent heat of fusion of ice delivers some energy to the system. C.) The specific heat of ice is greater than that...
An insulated Thermos contains 115 g of water at 78.7 ˚C. You put in a 10.0...
An insulated Thermos contains 115 g of water at 78.7 ˚C. You put in a 10.0 g ice cube at 0.00 ˚C to form a system of ice + original water. The specific heat of liquid water is 4190 J/kg•K; and the heat of fusion of water is 333 kJ/kg. What is the net entropy change of the system from then until the system reaches the final (equilibrium) temperature?
An insulated Thermos contains 113 g of water at 77.3 ˚C. You put in a 10.3...
An insulated Thermos contains 113 g of water at 77.3 ˚C. You put in a 10.3 g ice cube at 0.00 ˚C to form a system of ice + original water. The specific heat of liquid water is 4190 J/kg•K; and the heat of fusion of water is 333 kJ/kg. What is the net entropy change of the system from then until the system reaches the final (equilibrium) temperature?
An insulated Thermos contains 119 g of water at 75.1 ˚C. You put in a 9.16...
An insulated Thermos contains 119 g of water at 75.1 ˚C. You put in a 9.16 g ice cube at 0.00 ˚C to form a system of ice + original water. The specific heat of liquid water is 4190 J/kg•K; and the heat of fusion of water is 333 kJ/kg. What is the net entropy change of the system from then until the system reaches the final (equilibrium) temperature?
An insulated container has 2.00kg of water at 25◦C to which an unknown amount of ice...
An insulated container has 2.00kg of water at 25◦C to which an unknown amount of ice at 0◦C is added. The system comes to an equilibrium temperature of 20◦C. The heat capacity for water is 4190 J and the heat of fusion for ice is kg·K kJ LF =334kg. (a) Determine the amount of ice that was added to the water. (b) What is the change in the entropy associated with the ice melting? (c) What is the change in...
A quantity of ice at 0.0 °C was added to 33.6 g of water at 41.0...
A quantity of ice at 0.0 °C was added to 33.6 g of water at 41.0 °C to give water at 0.0 °C. How much ice was added? The heat of fusion of water is 6.01 kJ/mol, and the specific heat is 4.18 J/(g•°C). ______ grams
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT