Question

An amount of energy is added to ice, raising its temperature from -10°C to -5°C. A...

An amount of energy is added to ice, raising its temperature from -10°C to -5°C. A larger amount of energy is added to the same mass of water, raising its temperature from 15°C to 20°C. From these results, what can we conclude?

A.) Overcoming the latent heat of fusion of ice requires an input of energy.

B.) The latent heat of fusion of ice delivers some energy to the system.

C.) The specific heat of ice is greater than that of water.

D.) The specific heat of ice is greater than that of water.

Homework Answers

Answer #1

Quantity of heat absorbed by a material is Q = m CΔT

Where m is the mass, C is the specific heat and ΔT is the change in temperature.

The masses of ice and water are the same and both are heated through same temperature range.

But, water takes more heat than ice to heat through same temperature range. This implies that the specific heat of water is greater than the specific heat of ice.

We can conclude from the result that:

(d): the specific heat of ice is less than that of water.

Please note: in the question, choices C and D are identical and the choice D needed to be changed into the specific heat of ice is less than that of water

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Calculate the amount of heat energy required to change 0.173 kg of ice at a temperature...
Calculate the amount of heat energy required to change 0.173 kg of ice at a temperature of -35 �C to steam at a temperature of 160 �C. (specific heat capacities of ice, water and steam are 2090, 4180, 2010 J ⁄ kg ⁄ �C respectively. Latent heat of fusion and vaporization of water are 3.34e5, 2.26e6 J ⁄ kg respectively.)
A 24 g block of ice is cooled to −63◦C. It is added to 572 g...
A 24 g block of ice is cooled to −63◦C. It is added to 572 g of water in a 98 g copper calorimeter at a temperature of 30◦C. Find the final temperature. The specific heat of copper is 387 J/kg ·◦C and of ice is 2090 J/kg ·◦C. The latent heat of fusion of water is 3.33 × 105 J/kg and its specific heat is 4186 J/kg·◦C. Answer in units of ◦C.
A 31 g block of ice is cooled to −90◦C. It is added to 591 g...
A 31 g block of ice is cooled to −90◦C. It is added to 591 g of water in an 65 g copper calorimeter at a temperature of 26◦C. Find the final temperature. The specific heat of copper is 387 J/kg · ◦C and of ice is 2090 J/kg · ◦C . The latent heat of fusion of water is 3.33 × 105 J/kg and its specific heat is 4186 J/kg · ◦C . Answer in units of ◦C.
An ice cube of mass 0.041 kg and temperature -13 ∘C is heated until it is...
An ice cube of mass 0.041 kg and temperature -13 ∘C is heated until it is now fully melted and at a temperature of 11∘C now. What percentage of the total energy was used to melt the ice? (Assume that there is no heat exchange with any container or the environment.) The specific heat of ice is 2200 J/kg ∘C and the specific heat of water is 4186 J/kg ∘C. The latent heat of fusion of ice is 334000 J/kg...
How much energy is required to change a 23 g ice cube from ice at −...
How much energy is required to change a 23 g ice cube from ice at − 12 ◦ C to steam at 101 ◦ C? The specific heat of ice is 2090 J / kg · ◦ C and of water 4186 J / kg · ◦ C. The latent heat of fusion of water is 3 . 33 × 10^5 J / kg, its latent heat of vaporization is 2 . 26 × 10^6 J / kg, and the...
A 0.4-L glass of water at 20°C is to be cooled with ice to 5°C. The...
A 0.4-L glass of water at 20°C is to be cooled with ice to 5°C. The density of water is 1 kg/L, and the specific heat of water at room temperature is c = 4.18 kJ/kg·°C. The specific heat of ice at about 0°C is c = 2.11 kJ/kg·°C. The melting temperature and the heat of fusion of ice at 1 atm are 0°C and 333.7 kJ/kg. A) Determine how much ice needs to be added to the water, in...
An insulated container has 2.00kg of water at 25◦C to which an unknown amount of ice...
An insulated container has 2.00kg of water at 25◦C to which an unknown amount of ice at 0◦C is added. The system comes to an equilibrium temperature of 20◦C. The heat capacity for water is 4190 J and the heat of fusion for ice is kg·K kJ LF =334kg. (a) Determine the amount of ice that was added to the water. (b) What is the change in the entropy associated with the ice melting? (c) What is the change in...
A 295.0 g black of ice is cooled to -78 degrees C. It is added to...
A 295.0 g black of ice is cooled to -78 degrees C. It is added to 160 g of water in a calorimeter (of negligible specific heat) at a temperature of 25 degrees C. Please use the specific heats and latent heats from the equation sheet. a) List neatly your knowns and unknowns. b) which gets to 0 degrees C first, the water or the ice? Make preliminary calculations to support your answer. c) does the one that gets to...
How many joules heat must be added to 2.0 kg of ice at a temperature of...
How many joules heat must be added to 2.0 kg of ice at a temperature of -30 °C to bring it to room temperature 20 °C? (Specific heat capacity of ice is 2100 J/kg °C). (Specific heat capacity of water is 4186 J/kg °C). (Latent heat of water-ice is 3.33x105 J/kg) Group of answer choices 126.52 kJ 959.44 kJ 4293.44 kJ 668.78 kJ
Ten ice cubes of 2cm edge, at a temperature of -5°C are added to 1 liter...
Ten ice cubes of 2cm edge, at a temperature of -5°C are added to 1 liter of water at 20°C in a well-insulated thermos flask. What is the equilibrium temperature ? (Use: cp ice = 2.1 kJ/(kg °C), heat of fusion for ice: hice-water = 334kJ/kg, and cp water = 4.18 kJ/(kg °C)).