Question

An insulated Thermos contains 141 g of water at 72.1 ˚C. You put in a 6.60...

An insulated Thermos contains 141 g of water at 72.1 ˚C. You put in a 6.60 g ice cube at 0.00 ˚C to form a system of ice + original water. The specific heat of liquid water is 4190 J/kg•K; and the heat of fusion of water is 333 kJ/kg. What is the net entropy change of the system from then until the system reaches the final (equilibrium) temperature?

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
An insulated Thermos contains 115 g of water at 78.7 ˚C. You put in a 10.0...
An insulated Thermos contains 115 g of water at 78.7 ˚C. You put in a 10.0 g ice cube at 0.00 ˚C to form a system of ice + original water. The specific heat of liquid water is 4190 J/kg•K; and the heat of fusion of water is 333 kJ/kg. What is the net entropy change of the system from then until the system reaches the final (equilibrium) temperature?
An insulated Thermos contains 113 g of water at 77.3 ˚C. You put in a 10.3...
An insulated Thermos contains 113 g of water at 77.3 ˚C. You put in a 10.3 g ice cube at 0.00 ˚C to form a system of ice + original water. The specific heat of liquid water is 4190 J/kg•K; and the heat of fusion of water is 333 kJ/kg. What is the net entropy change of the system from then until the system reaches the final (equilibrium) temperature?
An insulated Thermos contains 119 g of water at 75.1 ˚C. You put in a 9.16...
An insulated Thermos contains 119 g of water at 75.1 ˚C. You put in a 9.16 g ice cube at 0.00 ˚C to form a system of ice + original water. The specific heat of liquid water is 4190 J/kg•K; and the heat of fusion of water is 333 kJ/kg. What is the net entropy change of the system from then until the system reaches the final (equilibrium) temperature?
An 11 g ice cube at -12˚C is put into a Thermos flask containing 145 cm3...
An 11 g ice cube at -12˚C is put into a Thermos flask containing 145 cm3 of water at 24˚C. By how much has the entropy of the cube-water system changed when a final equilibrium state is reached? The specific heat of ice is 2200 J/kg K and that of liquid water is 4187 J/kg K. The heat of fusion of water is 333 × 103 J/kg. and A 6.0 g ice cube at -21˚C is put into a Thermos...
An 10 g ice cube at -13˚C is put into a Thermos flask containing 115 cm3...
An 10 g ice cube at -13˚C is put into a Thermos flask containing 115 cm3 of water at 20˚C. By how much has the entropy of the cube-water system changed when a final equilibrium state is reached? The specific heat of ice is 2200 J/kg K and that of liquid water is 4187 J/kg K. The heat of fusion of water is 333 × 103 J/kg.
An insulated beaker with negligible mass contains liquid water with a mass of 0.225 kg and...
An insulated beaker with negligible mass contains liquid water with a mass of 0.225 kg and a temperature of 68.8 ∘C . Take the specific heat of liquid water to be 4190 J/kg⋅K , the specific heat of ice to be 2100 J/kg⋅K , and the heat of fusion for water to be 3.34×105 J/kg . How much ice at a temperature of -15.3 ∘C∘C must be dropped into the water so that the final temperature of the system will...
An insulated beaker with negligible mass contains liquid water with a mass of 0.320 kg and...
An insulated beaker with negligible mass contains liquid water with a mass of 0.320 kg and a temperature of 74.4 ∘C How much ice at a temperature of -21.0 ∘C∘C must be dropped into the water so that the final temperature of the system will be 26.0 ∘C∘C ? Take the specific heat of liquid water to be 4190 J/kg⋅KJ/kg⋅K , the specific heat of ice to be 2100 J/kg⋅KJ/kg⋅K , and the heat of fusion for water to be...
An insulated beaker with negligible mass contains liquid water with a mass of 0.280 kgkg and...
An insulated beaker with negligible mass contains liquid water with a mass of 0.280 kgkg and a temperature of 75.2 ∘C. How much ice at a temperature of -19.0 ∘C∘C must be dropped into the water so that the final temperature of the system will be 32.0 ∘C∘C ? Take the specific heat of liquid water to be 4190 J/kg⋅KJ/kg⋅K , the specific heat of ice to be 2100 J/kg⋅KJ/kg⋅K , and the heat of fusion for water to be...
A perfectly insulated thermos contains 0.300 kg of water initially at 50 degrees C. A mass...
A perfectly insulated thermos contains 0.300 kg of water initially at 50 degrees C. A mass os of 0.100 kg of water initially at 10 degrees C is added. Ignore any heat exchanges with the outside environment. Take the specific heat capacity of liquid water as 4190 J/kgK. A) Draw a diagram for the situation, indicating the relative masses and temperatures. B) Find the final temperature of the combined water after they have mixed and attained thermal equilibrium (HINT: equate...
Adding Ice to Water An insulated beaker with negligible mass contains liquid water with a mass...
Adding Ice to Water An insulated beaker with negligible mass contains liquid water with a mass of 0.340 kg and a temperature of 66.3 ∘C . How much ice at a temperature of -17.9 ∘C must be dropped into the water so that the final temperature of the system will be 22.0 ∘C ? Take the specific heat of liquid water to be 4190 J/kg⋅K , the specific heat of ice to be 2100 J/kg⋅K , and the heat of...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT