Question

If the following data is collected in Part A, what is the heat capacity of the...

If the following data is collected in Part A, what is the heat capacity of the calorimeter?

Ti cool water 21.7     
Ti warm water 57.9
Tf 36.9

Homework Answers

Answer #1

Heat of water is absorbed by the calorimeter

If Tf =final temperature of calorimeter and water, and considered that water was warm initially

Let change in temperature, of calorimeter= ∆T1=Tf-Tcool=36.9-21.7=15.2C

Change in temp, of water=∆T2=Tf-Twarm =36.9-57.9=-21 C

1) Heat of water after reaction =Q(water)

Q(water)=-Q(calorimeter)

Q(calorimeter)=C(cal)*∆T1

C(cal)=specific heat of calorimeter

Also Q(water)=(mass of water ) *C(water)* ∆T2

-C(cal)*∆T1=(mass of water ) *C(water)* ∆T2

-C(cal)=(mass of water ) *C(water)* ∆T2/∆T1

-C(cal)=(mass of water ) *C(water)*( -21/15.2)

Or, C(cal)=(mass of water ) *4.18 J/g C* 1.38=(mass of water ) *5.775 J/g C

Or, C(cal)= =(mass of water ) *5.775 J/g C

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Calculate the heat capacity of the calorimeter system using equation 3 and the molar enthalpy of...
Calculate the heat capacity of the calorimeter system using equation 3 and the molar enthalpy of neutralization ΔHneut (provided on p. 2). Equation 3: ΔHtransformation = −ΔHcalorimeter =−CP,cal(Tf−Ti) (3) ΔHneut: is −56.02 kJ per mole Limiting reagent: 0.00112 moles of NaOH Tf = 29.0 C Ti = 22.50 C Mass of dry calorimeter assembly: 6.36 g Mass of calorimeter after HCl added: 54.05 g Mass of calorimeter with NaOH solution: 103.77 g
Specific Heat Experiment: Calculate the percent error between the experimental and theoretical values Based on the...
Specific Heat Experiment: Calculate the percent error between the experimental and theoretical values Based on the expected values, what is the most likely metal? Procedure Metal A: Aluminum Calorimeter Mass Tf Ti Specific Heat 52.5 25.4 22.6 900 Water Mass Tf Ti Specific Heat 147.5 25.4 22.6 4186 Metal Mass Tf Ti Specific Heat 64.5         25.4 100 38.7 Procedure Metal B: Aluminum Calorimeter Mass Tf Ti Specific Heat 52.5 25.3 22.4 900 Water Mass Tf Ti Specific Heat 146.5 25.3...
Data Sheet Table 1. Steel Bolt Specific Heat Data Bolt Ti (°C) Water Ti (°C) Water...
Data Sheet Table 1. Steel Bolt Specific Heat Data Bolt Ti (°C) Water Ti (°C) Water and Bolt Tf (°C) Water ΔT = Tf - Ti Bolt ΔT (°C) Bolt Mass (kg) Water Mass (kg) Steel Bolt 72 20 23 3 72 .021 .15 Post-Lab Questions A. The heat lost by the hot bolt is equal to the heat gained by the water in the calorimeter. Use the equations provided above and what you know about heat to solve for...
In a calorimetry experiment to determine the specific heat capacity of a metal block, the following...
In a calorimetry experiment to determine the specific heat capacity of a metal block, the following data was recorded: Quantity Mass of the metal block 0.50 kg Mass of empty calorimeter + Stirrer 0.06 kg Mass of calorimeter + stirrer + water 0.20 kg Mass of water 0.14 kg Initial Temperature of metal block 55.5 ⁰C Initial Temperature of water and calorimeter 22 ⁰C Final Temperature of block- water system 27.4 ⁰C Take the specific heat capacity of water to...
Lab Purpose: Determine the specific heat of an unknown metal by using the principle of thermal...
Lab Purpose: Determine the specific heat of an unknown metal by using the principle of thermal equilibrium. Question: Calculate the percent error between the experimental and theoretical values Aluminum Calorimeter Mass Tf Ti Specific Heat 52.5 25.3 22.4 900 Water Mass Tf Ti Specific Heat 146.5 25.3 22.4 4186 Metal Mass Tf Ti Specific Heat 65 25.3 100 394.5
In an experiment to determine the enthalpy of fusion of ice, the following data was collected:...
In an experiment to determine the enthalpy of fusion of ice, the following data was collected: Initial mass of water in the calorimeter = 70.89g Initial temperature of the water in the calorimeter = 17.6 degrees C Final mass of temperature in the calorimeter = 0.0 degrees C Please calculate: a) the mass of the ice that melted b) the number of mol of ice that melted c) the change in temperature of the initial mass of water in the...
The specific heat capacity of aluminum is 0.22 cal/g °C. The specific heat capacity of water...
The specific heat capacity of aluminum is 0.22 cal/g °C. The specific heat capacity of water is 1.00cal/g °C. If you heat a 100-gram aluminum pot containing 100 grams of water over the stove, which will warm up at a higher rate — the aluminum pot or the water? Hint: Consider the definition of specific heat capacity. A. The aluminum pot B. The water C. They will warm at the same rate.
Specific Heat The heat capacity of an object indicates how much energy that object can absorb...
Specific Heat The heat capacity of an object indicates how much energy that object can absorb for a given increase in that object's temperature. In a system in which two objects of different temperatures come into contact with one another, the warmer object will cool and the cooler object will warm up until the system is at a single equilibrium temperature. Note the difference between the terms molar heat capacity, which has units of J/(mol⋅∘C), andspecific heat, which has units...
Specific Heat The heat capacity of an object indicates how much energy that object can absorb...
Specific Heat The heat capacity of an object indicates how much energy that object can absorb for a given increase in that object's temperature. In a system in which two objects of different temperatures come into contact with one another, the warmer object will cool and the cooler object will warm up until the system is at a single equilibrium temperature. Note the difference between the terms molar heat capacity, which has units of J/(mol⋅∘C), and specific heat, which has...
1. A metal sample, at 20. degree Celsius, has a heat capacity of 0.25 J/C. How...
1. A metal sample, at 20. degree Celsius, has a heat capacity of 0.25 J/C. How much heat it must absorb to increase its temperature to 53 degree Celsius? 2. In a coffee-cup calorimeter, 50.0 g hot water at 60.0 C was mixed with 50.0 g cold water at 20.0 C. If the final temperature is 36.9, what is the heat capacity of the calorimeter in J/C? Specific heat of water is 4.184 J/(g C) 3. Green line of Hg...