Question

1. A metal sample, at 20. degree Celsius, has a heat capacity of 0.25 J/C. How...

1. A metal sample, at 20. degree Celsius, has a heat capacity of 0.25 J/C. How much heat it must absorb to increase its temperature to 53 degree Celsius?

2. In a coffee-cup calorimeter, 50.0 g hot water at 60.0 C was mixed with 50.0 g cold water at 20.0 C. If the final temperature is 36.9, what is the heat capacity of the calorimeter in J/C? Specific heat of water is 4.184 J/(g C)

3. Green line of Hg lamp has a wavelength of 546.1 nm. What is the energy of photon associated with this green line?

4. The lines observed in H-lamp are parts of Balmer Series. All these lines are due to a transition from various higher n value to a common n. What is this common lower n value for all these lines? (1, 2, 3, or 0?)

Homework Answers

Answer #1

1) q = C * dT
q = 0.25 * (53-20)
q = 8.25 J

2) Heat lost by Hot water = Heat gain by cold water
q for hot water = 50 * 4.184 * (36.9-60)
q = - 4832.5 J
q for cold water = 50 * 4.184 * (36.9 - 20)
q = 3535.48 J
heat capcity of Caloriemeter = 4832.5 - 3535.8
haet capcity = 1296.7J

3) wave length = 546.1 nm
E = hc / lamda
E = (6.625 * 10^-34 * 2.998 * 10^8) /(546.1 * 10^-9)
E = 3.637 * 10^-19 J

4) for all Balmer series spectral lines the lowest n valu is 2. And all these lines are fall in the region of visible light.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Question 1 In Part IIB, neutralization of acetic acid and NaOH, what is the limiting reactant...
Question 1 In Part IIB, neutralization of acetic acid and NaOH, what is the limiting reactant of the neutralization reaction? HCl NaOH acetic acid water Question 2 A sample of solid X was dissolved in 200. g of water at 20. C. If the final temperature of the solution was 15. C, which one if true about the dissolution of X in water? Endothermic with positive heat of solution Exothermic with positive heat of solution Exothermic with negative heat of...
a 25.0g piece of aluminum (molar heat capacity of 24.03 J/g degrees Celsius) is heated to...
a 25.0g piece of aluminum (molar heat capacity of 24.03 J/g degrees Celsius) is heated to 82.4 degrees Celsius and dropped into a calorimeter containing water (specific heat capacity of water is 4.18 J/g degrees Celsius) initially at 22.3 degrees Celsius. The final temperature of the water is 24.98 degrees Celsius. Calculate the mass of water in the calorimeter.
A 35.7 gram sample of iron (heat capacity 0.45 g/J°C) was heated to 99.10 °C and...
A 35.7 gram sample of iron (heat capacity 0.45 g/J°C) was heated to 99.10 °C and placed into a coffee cup calorimeter containing 42.92 grams of water initially at 15.15 °C. What will the final temperature of the system be? (Specific heat of water is 4.184 J/g°C). Please show work.
A 6.40 g sample of iron (specific heat capacity = 0.451 J/g*C) is placed in a...
A 6.40 g sample of iron (specific heat capacity = 0.451 J/g*C) is placed in a boiling water bath until the temperature of the metal is 100.0*C. The metal is quickly transferred to 119.0g of water at 25.0*C in a calorimeter (specific heat capacity of water = 4.18 J/g*C). Determine the final temperature of the water in the calorimeter (3 significant figures).
A 6.40 g sample of iron (specific heat capacity =0.451 J/g*C) is placed in a boiling...
A 6.40 g sample of iron (specific heat capacity =0.451 J/g*C) is placed in a boiling water bath until the temperature of the metal is 100.0*C. The metal is quickly transferred to 119.0g of water at 25.0*C in a calorimeter (specific heat capacity of water = 4.18 J/g*C). Determine the final temperature of the water in the calorimeter (3 significant figures).
A 1.00g sample of the rocket fuel hydrazine N2H4 is burned in a bomb calorimeter containing...
A 1.00g sample of the rocket fuel hydrazine N2H4 is burned in a bomb calorimeter containing 12.00g of water. The temperature of the water and bomb calorimeter rises from 24.62 degrees Celsius to 28.16 degrees Celsius. Assuming the heat capacity of the empty bomb calorimeter is 837J/degrees Celsius, calculate the heat of combustion of 1 mol of hydrazine in the bomb calorimeter. (The specific heat capacity of water is 4.184 J/g*degree Celsius .
A student wishes to determine the heat capacity of a coffee-cup calorimeter. After she mixes 95.8...
A student wishes to determine the heat capacity of a coffee-cup calorimeter. After she mixes 95.8 g of water at 62°C with 95.8 g of water, already in the calorimeter, at 18.2°C, the final temperature of the water is 35.0°C. Calculate the heat capacity of the calorimeter in J/K. Use 4.184 J/g°C as the specific heat of water.
Answer the following questions: a) A calorimeter, specific heat capacity 500.0 J/kgC, mass 200.0 g, contains...
Answer the following questions: a) A calorimeter, specific heat capacity 500.0 J/kgC, mass 200.0 g, contains 300.0 g of water at 40.0 C. If 50.0 g of ice at 0.00 C is dropped into the water and stirred, the temperature of the mixture when the ice has melted is 23.8 C. Calculate the heat of fusion of ice. b) What is the final temperature attained when 900.0 g of ice at 0.00 C is dropped into 3400.0 g of water...
1. The specific heat of iron metal is 0.450 J/g⋅K. How many J of heat are...
1. The specific heat of iron metal is 0.450 J/g⋅K. How many J of heat are necessary to raise the temperature of a 1.05 −kg block of iron from 28.0 ∘Cto 85.0 ∘C? 2. A 1.80-g sample of phenol (C6H5OH) was burned in a bomb calorimeter whose total heat capacity is 11.66 kJ/∘C. The temperature of the calorimeter plus contents increased from 21.36∘Cto 26.37∘C. A. Write a balanced chemical equation for the bomb calorimeter reaction. B. What is the heat...
1.) In an experiment, a 0.6319 g sample of para-benzoquinone (C6H4O2) is burned completely in a...
1.) In an experiment, a 0.6319 g sample of para-benzoquinone (C6H4O2) is burned completely in a bomb calorimeter. The calorimeter is surrounded by 1.276×103 g of water. During the combustion the temperature increases from 23.67 to 26.17 °C. The heat capacity of water is 4.184 J g-1°C-1. The heat capacity of the calorimeter was determined in a previous experiment to be 786.6 J/°C. Assuming that no energy is lost to the surroundings, calculate the molar heat of combustion of para-benzoquinone...