Question

Specific Heat The heat capacity of an object indicates how much energy that object can absorb...

Specific Heat

The heat capacity of an object indicates how much energy that object can absorb for a given increase in that object's temperature. In a system in which two objects of different temperatures come into contact with one another, the warmer object will cool and the cooler object will warm up until the system is at a single equilibrium temperature.

Note the difference between the terms molar heat capacity, which has units of J/(mol⋅∘C), andspecific heat, which has units of J/(g⋅∘C).

In this problem answers are requested to three significant digits for grading purposes. The true number of significant digits may be more or less.

Part A

A volume of 120. mL of H2O is initially at room temperature (22.00 ∘C). A chilled steel rod at 2.00 ∘Cis placed in the water. If the final temperature of the system is 21.20  ∘C , what is the mass of the steel bar?

Use the following values:

specific heat of water = 4.18 J/(g⋅∘C)

specific heat of steel = 0.452 J/(g⋅∘C)

Express your answer to three significant figures and include the appropriate units.

mass of the steel =

SubmitHintsMy AnswersGive UpReview Part

Part B

The specific heat of water is 4.18 J/(g⋅∘C). Calculate the molar heat capacity of water.

Express your answer to three significant figures and include the appropriate units.

molar heat capacity for water =

75.24Jmol°C

SubmitHintsMy AnswersGive UpReview Part

Incorrect; Try Again; 5 attempts remaining

Homework Answers

Answer #1

Q = m c ∆T
Q = quantity of heat in joules (J)
m = mass of the substance acting as the environment in
grams (g)
c = specific heat capacity (4.19 for H2O) in J/(g oC)
∆T = change in temperature = Tfinal - Tinitial in oC

Part A

120 x (22-21.2) x 4.18 = mass x 0.452 x (22-2)

Mass = 401.28 / 9.04 = 44.389

Mass of the steel bar = 44.389 gm

Part B

we know 4.18 joules per gram to raise one degree C

Next. We find out how many moles of water are in 1 gram

1 mole of water is 18 grams (oxygen weighs 16 gram/mole, hydrogen weighs 1 gram/mole) , so 1 gram is 1/18 mole

4.18 x 18= 75.24 joules required to raise 1 mole 1 degree C

molar heat capacity 75.24 J/molC

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Specific Heat The heat capacity of an object indicates how much energy that object can absorb...
Specific Heat The heat capacity of an object indicates how much energy that object can absorb for a given increase in that object's temperature. In a system in which two objects of different temperatures come into contact with one another, the warmer object will cool and the cooler object will warm up until the system is at a single equilibrium temperature. Note the difference between the terms molar heat capacity, which has units of J/(mol⋅∘C), and specific heat, which has...
Part A) A volume of 90.0 mL of H2O is initially at room temperature (22.00 ∘C)....
Part A) A volume of 90.0 mL of H2O is initially at room temperature (22.00 ∘C). A chilled steel rod at 2.00 ∘C is placed in the water. If the final temperature of the system is 21.50 ∘C , what is the mass of the steel bar? Use the following values: specific heat of water = 4.18 J/(g⋅∘C) specific heat of steel = 0.452 J/(g⋅∘C) Express your answer to three significant figures and include the appropriate units. Part B) The...
Part A A volume of 80.0 mL of H2O is initially at room temperature (22.00 ∘C)....
Part A A volume of 80.0 mL of H2O is initially at room temperature (22.00 ∘C). A chilled steel rod at 2.00 ∘C is placed in the water. If the final temperature of the system is 21.30  ∘C , what is the mass of the steel bar? Use the following values: specific heat of water = 4.18 J/(g⋅∘C) specific heat of steel = 0.452 J/(g⋅∘C) Express your answer to three significant figures and include the appropriate units. The specific heat of...
Part A: A volume of 95.0 mL of H2O is initially at room temperature (22.00 ∘C)....
Part A: A volume of 95.0 mL of H2O is initially at room temperature (22.00 ∘C). A chilled steel rod at 2.00 ∘C is placed in the water. If the final temperature of the system is 21.00  ∘C , what is the mass of the steel bar? Use the following values: specific heat of water = 4.18 J/(g⋅∘C) specific heat of steel = 0.452 J/(g⋅∘C) Part B: The specific heat of water is 4.18 J/(g⋅∘C). Calculate the molar heat capacity of...
A volume of 110. mL of H2O is initially at room temperature (22.00 ∘C). A chilled...
A volume of 110. mL of H2O is initially at room temperature (22.00 ∘C). A chilled steel rod at 2.00 ∘C is placed in the water. If the final temperature of the system is 21.20 ∘C , what is the mass of the steel bar? Use the following values: specific heat of water = 4.18 J/(g⋅∘C) specific heat of steel = 0.452 J/(g⋅∘C)
A 6.40 g sample of iron (specific heat capacity = 0.451 J/g*C) is placed in a...
A 6.40 g sample of iron (specific heat capacity = 0.451 J/g*C) is placed in a boiling water bath until the temperature of the metal is 100.0*C. The metal is quickly transferred to 119.0g of water at 25.0*C in a calorimeter (specific heat capacity of water = 4.18 J/g*C). Determine the final temperature of the water in the calorimeter (3 significant figures).
A 6.40 g sample of iron (specific heat capacity =0.451 J/g*C) is placed in a boiling...
A 6.40 g sample of iron (specific heat capacity =0.451 J/g*C) is placed in a boiling water bath until the temperature of the metal is 100.0*C. The metal is quickly transferred to 119.0g of water at 25.0*C in a calorimeter (specific heat capacity of water = 4.18 J/g*C). Determine the final temperature of the water in the calorimeter (3 significant figures).
How much heat energy, in kilojoules, is required to convert 46.0 g of ice at −18.0...
How much heat energy, in kilojoules, is required to convert 46.0 g of ice at −18.0 ∘C to water at 25.0 ∘C ? Express your answer to three significant figures and include the appropriate units. The constants for H2O are shown here: Specific heat of ice: sice=2.09 J/(g⋅∘C) Specific heat of liquid water: swater=4.18 J/(g⋅∘C) Enthalpy of fusion (H2O(s)→H2O(l)): ΔHfus=334 J/g Enthalpy of vaporization (H2O(l)→H2O(g)): ΔHvap=2250 J/g
How much heat energy, in kilojoules, is required to convert 79.0 g of ice at −18.0...
How much heat energy, in kilojoules, is required to convert 79.0 g of ice at −18.0 ∘C to water at 25.0 ∘C ? Express your answer to three significant figures and include the appropriate units. The constants for H2O are shown here: Specific heat of ice: sice=2.09 J/(g⋅∘C) Specific heat of liquid water: swater=4.18 J/(g⋅∘C) Enthalpy of fusion (H2O(s)→H2O(l)): ΔHfus=334 J/g Enthalpy of vaporization (H2O(l)→H2O(g)): ΔHvap=2250 J/g
The specific heat of water is 4.18 J/(g⋅∘C). Calculate the molar heat capacity of water.
The specific heat of water is 4.18 J/(g⋅∘C). Calculate the molar heat capacity of water.
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT