Question

Analyzing a new reaction Consider the following elementary steps that make up the mechanism of a...

Analyzing a new reaction

Consider the following elementary steps that make up the mechanism of a certain reaction:

3A→B+C

B+2D→C+F

1. What is the overall reaction?

2. What is the rate law for step one of this reaction?

3. What is the rate law for step two of this reaction?

Homework Answers

Answer #1

1: Given that the reaction completes via the following two elementary steps.

3A----> B+C ----- (1)

B+2D -----> C+F ---- (2)

Now we can get the overall reaction by adding the abve two reactions. Hence the overall reaction is

3A + B + 2D ----- > B + C + C + F

Now 'B' will cancel out from both the sides. Hene the overall reaction is

3A + 2D ----- > 2C + F (answer)

(2): Rate law is proportional to the concentration of all the reactants raised to a power equals to the coffecient

Step-1 of the reaction is

3A ----> B+C

Hence rate law is

rate = k x [A]3 (answer)

(3): Step-2 of the reaction is

B + 2D ----> C + F

Hence rate law is

rate = k x [B]x[D]2 ( answer)

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A reaction mechanism is defined as the sequence of reaction steps that define the pathway from...
A reaction mechanism is defined as the sequence of reaction steps that define the pathway from reactants to products. Each step in a mechanism is an elementary reaction, which describes a single molecular event of usually one or two molecules interacting. The rate law for an overall reaction is the rate law for the slowest step in the mechanism, which is directly related to the stoichiometric coefficients of the reactants. The exception to this rule occurs when the slowest step...
A reaction occurs via the following sequence of elementary steps. What is the reaction intermediate? 1st...
A reaction occurs via the following sequence of elementary steps. What is the reaction intermediate? 1st step: A + 2B → 2C 2nd step: 2C → D Question 9 options: A) B B) There is no intermediate C) C D) A E) D A reaction occurs via the following sequence of elementary steps. What is the rate law based on this reaction mechanism? 1st step: A + B → 2C + D slow 2nd step: C → E fast 3rd...
Consider the following proposed two-­‐step mechanism for the reaction: 2A + B à C + D....
Consider the following proposed two-­‐step mechanism for the reaction: 2A + B à C + D. Step 1: A + B ⇄ E Step 2: E + A → C + D a. Is this a reasonable mechanism? Why or why not? b. What are the intermediates in the reaction mechanism? c. Write a rate law for each step. d. Write an overall rate law if the first step is very slow compared to the second step. e. Write an...
QUESTION 9 A reaction is studied and found to proceed in the following two elementary steps:...
QUESTION 9 A reaction is studied and found to proceed in the following two elementary steps: A + B → C + Q Q + A → D + B What is the catalyst for the reaction? Q D C B A QUESTION 10 2A → B + C The above reaction is studied and found to proceed in the following two elementary steps: A → Q Q + A → B + C If the second step is the...
Consider the following proposed mechanisms for Reaction (1): Mechanism A (one step): H2O2 + 2I- +...
Consider the following proposed mechanisms for Reaction (1): Mechanism A (one step): H2O2 + 2I- + 2H3O+ à I2 + 4H2O Reaction (1) Mechanism B (three steps) H2O2 + I- à OH- + HOI (slow) H3O+ + OH- ßà 2H2O (fast) HOI + H3O+ + I- à I2 + H2O (fast) a) Show that when you sum the three elementary steps, the net result of Mechanism B is Reaction (1): b) What would be the expected rate law for mechanism...
Consider the two-step mechanism for a reaction: Step 1     NO2     +     NO2 -------> NO3     +      NO       &n
Consider the two-step mechanism for a reaction: Step 1     NO2     +     NO2 -------> NO3     +      NO         slow; RDS Step 2     NO3     +     CO -------> NO2     +     CO2         fast a. What is the overall reaction? b. Identify the intermediates in the reaction mechanism. c. What is the predicted rate law expression? Be sure to only list reactants from the overall equation and not intermediates in the rate law expression.
The following three step mechanism has been proposed for this reaction: Step 1: A + B...
The following three step mechanism has been proposed for this reaction: Step 1: A + B <--> G fast Step 2: A + G --> E + D slow Step 3: E + 2C --> 2D + F fast Determine the rate law predicted by the mechanism. Identify any intermediates shown. The experiemental rate law was determined to be Rate = [A]2[B]. Is this mechanism valid?
The overall order of an elementary step directly corresponds to its molecularity. Both steps in this...
The overall order of an elementary step directly corresponds to its molecularity. Both steps in this example are second order because they are each bimolecular. Furthermore, the rate law can be determined directly from the number of each type of molecule in an elementary step. For example, the rate law for step 1 is rate=k[NO2]2 The exponent "2" is used because the reaction involves two NO2 molecules. The rate law for step 2 is rate=k[NO3]1[CO]1=k[NO3][CO] because the reaction involves only...
How to calculate the overall rate law base on a reaction mechanism that involves 2 steps:...
How to calculate the overall rate law base on a reaction mechanism that involves 2 steps: first step is fast step and the second step is an equilibrium ? First Step: A --> B + C (fast) Second Step: B --> D + E (slow equilibrium)   
c.)At a given temperature, the elementary reaction A<=> B in the forward direction is the first...
c.)At a given temperature, the elementary reaction A<=> B in the forward direction is the first order in A with a rate constant of 3.40 × 10-2 s–1. The reverse reaction is first order in B and the rate constant is 5.80 × 10-2 s–1.What is the value of the equilibrium constant for the reaction A<=>B at this temperature. What is the value of the equilibrium constant for the reaction B<=> A at this temperature. d.) consider reaction mechanism: step...