Question

Consider the two-step mechanism for a reaction: Step 1     NO2     +     NO2 -------> NO3     +      NO       &n

Consider the two-step mechanism for a reaction:

Step 1     NO2     +     NO2 -------> NO3     +      NO         slow; RDS

Step 2     NO3     +     CO -------> NO2     +     CO2         fast

a. What is the overall reaction?

b. Identify the intermediates in the reaction mechanism.

c. What is the predicted rate law expression? Be sure to only list reactants from the overall equation and not intermediates in the rate law expression.

Homework Answers

Answer #1

Ans :

a) The overall raction can be determined by adding the steps of the reaction and cancelling out the common terms that are present on both the sides of equation.

So here , the overall reaction is given as :

NO2 + CO = NO + CO2

b) The intermediates are the species that appear in the initial steps of the reaction and do not appear in the final product.

So here the intermediate is NO3

c) The rate law of the reaction is given on the basis of rate determining step of the reaction which is the slowest step.

So here , the rate law will be given as :

Rate = K [NO2]2

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
The following is a proposed mechanism for the reaction NO2 (g) + CO (g) --> NO...
The following is a proposed mechanism for the reaction NO2 (g) + CO (g) --> NO (g) + CO2 (g). The rate law for the reaction is rate = k [NO2]2 a) is this a plausible mechanism? Explain. B) identify the reactants, intermediates, and products. NO2 (g) + NO2 (g)--> NO3 (g) + NO (g) (slow) and NO3 (g) + CO (g) --> NO2 (g) + CO2 (g) (fast)
The following is a proposed mechanism for the reaction NO2 (g) + CO (g) --> NO...
The following is a proposed mechanism for the reaction NO2 (g) + CO (g) --> NO (g) + CO2 (g). The rate law for the reaction is rate = k [NO2]2 a) is this a plausible mechanism? Explain. B) identify the reactants, intermediates, and products. NO2 (g) + NO2 (g)--> NO3 (g) + NO (g) (slow) and NO3 (g) + CO (g) --> NO2 (g) + CO2 (g) (fast)
Consider the following two-step mechanism for a reaction: NO2(g)+Cl2(g)→ClNO2(g)+Cl(g)Slow NO2(g)+Cl(g)→ClNO2(g)Fast Part A What is the overall...
Consider the following two-step mechanism for a reaction: NO2(g)+Cl2(g)→ClNO2(g)+Cl(g)Slow NO2(g)+Cl(g)→ClNO2(g)Fast Part A What is the overall reaction? Express your answer as a chemical equation. Identify all of the phases in your answer. Part B Identify the intermediates in the mechanism Part C What is the predicted rate law?
26. The mechanism of a reaction is shown below: NO2C l --> NO2 + Cl (slow)...
26. The mechanism of a reaction is shown below: NO2C l --> NO2 + Cl (slow) NO2Cl + Cl --> NO2 + Cl2 (fast) a) What is the overall reaction? b) What are the intermediates? c)Which is the rate determining step? d) What is the rate law? 27. The mechanism of a reaction is shown below 2NO <--> N2O2 (fast) N2O2 + O2 --> 2NO2 (slow) What is the overall reaction? b) What are the intermediates? c)Which is the rate...
The following three step mechanism has been proposed for this reaction: Step 1: A + B...
The following three step mechanism has been proposed for this reaction: Step 1: A + B <--> G fast Step 2: A + G --> E + D slow Step 3: E + 2C --> 2D + F fast Determine the rate law predicted by the mechanism. Identify any intermediates shown. The experiemental rate law was determined to be Rate = [A]2[B]. Is this mechanism valid?
A reaction mechanism is defined as the sequence of reaction steps that define the pathway from...
A reaction mechanism is defined as the sequence of reaction steps that define the pathway from reactants to products. Each step in a mechanism is an elementary reaction, which describes a single molecular event of usually one or two molecules interacting. The rate law for an overall reaction is the rate law for the slowest step in the mechanism, which is directly related to the stoichiometric coefficients of the reactants. The exception to this rule occurs when the slowest step...
Consider the following mechanism proposed for a reaction: Step 1)     A + 2 B → C    ...
Consider the following mechanism proposed for a reaction: Step 1)     A + 2 B → C     (slow) Step 2)     C + D → E     (fast) Step 3)     E → A + F     (fast) Give the overall reaction that results from this mechanism: Based on the rate limiting step, what is the actual rate law for this mechanism? Select all of the following species that are intermediates in this reaction. E B F C A D Select all of the following...
At temperatures below 500 K, the reaction between carbon monoxide and nitrogen dioxide CO (g) +...
At temperatures below 500 K, the reaction between carbon monoxide and nitrogen dioxide CO (g) + NO2 (g) ? CO2 (g) + NO (g) has the following rate equation: Rate = k[NO2]2. Which of the three mechanisms suggested here agrees with the experimentally observed rate equation? Mechanism 1: Step 1 Slow NO2 + NO2 ? NO3 + NO                       Step 2 Fast NO3 + CO ? NO2 + CO2 Mechanism 2: Step 1 Fast NO2 + NO2 ? N2O3 +...
Consider the following proposed two-­‐step mechanism for the reaction: 2A + B à C + D....
Consider the following proposed two-­‐step mechanism for the reaction: 2A + B à C + D. Step 1: A + B ⇄ E Step 2: E + A → C + D a. Is this a reasonable mechanism? Why or why not? b. What are the intermediates in the reaction mechanism? c. Write a rate law for each step. d. Write an overall rate law if the first step is very slow compared to the second step. e. Write an...
Given the following proposed mechanism, predict the rate law for the overall reaction. 2 NO2 +...
Given the following proposed mechanism, predict the rate law for the overall reaction. 2 NO2 + Cl2 → 2 NO2Cl (overall reaction) Mechanism NO2 + Cl2 → NO2Cl + Cl slow NO2 + Cl → NO2Cl fast Given the following proposed mechanism, predict the rate law for the overall reaction. 2 NO2 + Cl2 → 2 NO2Cl (overall reaction) Mechanism NO2 + Cl2 → NO2Cl + Cl slow NO2 + Cl → NO2Cl fast Rate = k[NO2][Cl]2 Rate = k[NO2][Cl2]...