Question

QUESTION 9 A reaction is studied and found to proceed in the following two elementary steps:...

QUESTION 9

A reaction is studied and found to proceed in the following two elementary steps:

A + B → C + Q

Q + A → D + B

What is the catalyst for the reaction?

Q

D

C

B

A

QUESTION 10

2A → B + C

The above reaction is studied and found to proceed in the following two elementary steps:

A → Q

Q + A → B + C

If the second step is the rate determining step (slow step), what is the rate law for the overall reaction?

rate = k

rate = k[A]/[B][Q]

rate = k[A]2

rate = k[A]

QUESTION 11

2A → B + C

Two trials of the above reaction are run. The concentration of A in the second trial is three times that in the first. It is found that the initial rate of the reaction in the second trial is nine times the initial rate in the first trial. This indicates that the reaction is ...

zero order in [A]

first order in [A]

second order in [A]

third order in [A]

Homework Answers

Answer #1

Q9 solution

B is the catalyst in the reaction because the species which remain unchanged at the end of reaction is called catalyst.

Since B is recovered at the product side in the second reaction therefore B is the catalyst in the reaction.

Q10 Solution

For the given elementary reactions

A --- > Q

Q + A ----- > B+C     slow step

Overall reaction is

2A ----- > B+ C

Q is the intermediate therefore cancelled out

Therefore rate law for the reaction is

Rate = k[A]2

Q11 Solution

Since the rate of reaction increased by factor 9 after tripleing the reactant concentration that means reaction is second order with A

9 = 3m

log 9 = m * log 3

log 9 / log 3 = m

2 = m

Hence order with respect to A is second order

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A reaction occurs via the following sequence of elementary steps. What is the reaction intermediate? 1st...
A reaction occurs via the following sequence of elementary steps. What is the reaction intermediate? 1st step: A + 2B → 2C 2nd step: 2C → D Question 9 options: A) B B) There is no intermediate C) C D) A E) D A reaction occurs via the following sequence of elementary steps. What is the rate law based on this reaction mechanism? 1st step: A + B → 2C + D slow 2nd step: C → E fast 3rd...
1.) 2A → B + C The above reaction is run and found to follow second...
1.) 2A → B + C The above reaction is run and found to follow second order kinetics with a rate constant of 1.30 x 10-3 M-1sec-1. If the initial concentration of A is 1.33 M, what is the concentration after 164 seconds? 2.) 2A → B + C Two trials of the above reaction are run with the same initial concentration of A. The first trial is performed at 25oC and the second at 35oC. If the rate constant...
The overall order of an elementary step directly corresponds to its molecularity. Both steps in this...
The overall order of an elementary step directly corresponds to its molecularity. Both steps in this example are second order because they are each bimolecular. Furthermore, the rate law can be determined directly from the number of each type of molecule in an elementary step. For example, the rate law for step 1 is rate=k[NO2]2 The exponent "2" is used because the reaction involves two NO2 molecules. The rate law for step 2 is rate=k[NO3]1[CO]1=k[NO3][CO] because the reaction involves only...
A) 2A → B + C The above reaction is run and found to follow first...
A) 2A → B + C The above reaction is run and found to follow first order kinetics with a rate constant of 1.30 x 10-3 sec-1. If the initial concentration of A is 1.72 M, what is the concentration after 152 seconds? B) 2A → B + C The above reaction is run and found to follow second order kinetics with a rate constant of 1.30 x 10-3 M-1sec-1. If the initial concentration of A is 1.66 M, what...
A) 2A → B + C The above reaction is run and it is found that...
A) 2A → B + C The above reaction is run and it is found that a plot of the concentration of A versus time is linear as the reaction proceeds. This indicates that the reaction is ... zero order in [A] first order in [A] second order in [A] third order in [A] B)2A → B + C The above reaction is run and it is found that a plot of the natural log of the concentration versus time...
Analyzing a new reaction Consider the following elementary steps that make up the mechanism of a...
Analyzing a new reaction Consider the following elementary steps that make up the mechanism of a certain reaction: 3A→B+C B+2D→C+F 1. What is the overall reaction? 2. What is the rate law for step one of this reaction? 3. What is the rate law for step two of this reaction?
Consider the following proposed two-­‐step mechanism for the reaction: 2A + B à C + D....
Consider the following proposed two-­‐step mechanism for the reaction: 2A + B à C + D. Step 1: A + B ⇄ E Step 2: E + A → C + D a. Is this a reasonable mechanism? Why or why not? b. What are the intermediates in the reaction mechanism? c. Write a rate law for each step. d. Write an overall rate law if the first step is very slow compared to the second step. e. Write an...
c.)At a given temperature, the elementary reaction A<=> B in the forward direction is the first...
c.)At a given temperature, the elementary reaction A<=> B in the forward direction is the first order in A with a rate constant of 3.40 × 10-2 s–1. The reverse reaction is first order in B and the rate constant is 5.80 × 10-2 s–1.What is the value of the equilibrium constant for the reaction A<=>B at this temperature. What is the value of the equilibrium constant for the reaction B<=> A at this temperature. d.) consider reaction mechanism: step...
a.)A certain reaction has an activation energy of 25.10 kJ/mol. At what Kelvin temperature will the...
a.)A certain reaction has an activation energy of 25.10 kJ/mol. At what Kelvin temperature will the reaction proceed 7.00 times faster than it did at 289 K? b.A certain reaction has an enthalpy of ΔH = 39 kJ and an activation energy of Ea = 51 kJ. What is the activation energy of the reverse reaction? c.)At a given temperature, the elementary reaction A<=> B in the forward direction is the first order in A with a rate constant of...
2A → B + C The above reaction is run and found to follow first order...
2A → B + C The above reaction is run and found to follow first order kinetics with a rate constant of 1.30 x 10-3 sec-1. If the initial concentration of A is 1.56 M, what is the concentration after 133 seconds? 2A → B + C The above reaction is run and found to follow zero order kinetics with a rate constant of 1.30 x 10-3 M•sec-1. If the initial concentration of A is 1.51 M, what is the...