Question

For the reaction A -+ R, second-order kinetics and C,, = 1 mollliter, we get 50%...

For the reaction A -+ R, second-order kinetics and C,, = 1 mollliter, we
get 50% conversion after 1 hour in a batch reactor. What will be the
conversion and concentration of A after 1 hour if C,, = 10 mollliter?

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
2A → B + C The above reaction is run and found to follow second order...
2A → B + C The above reaction is run and found to follow second order kinetics with a rate constant of 1.30 x 10-3 M-1sec-1. If the initial concentration of A is 1.45 M, what is the concentration after 142 seconds?
50%conversion is obtained in a CSTR for a homogenous, isothermal, liquid phase, irreversible second order reaction....
50%conversion is obtained in a CSTR for a homogenous, isothermal, liquid phase, irreversible second order reaction. What is the conversion if the reactor volume is five times the original, all else remaining unchanged?
1.) 2A → B + C The above reaction is run and found to follow second...
1.) 2A → B + C The above reaction is run and found to follow second order kinetics with a rate constant of 1.30 x 10-3 M-1sec-1. If the initial concentration of A is 1.33 M, what is the concentration after 164 seconds? 2.) 2A → B + C Two trials of the above reaction are run with the same initial concentration of A. The first trial is performed at 25oC and the second at 35oC. If the rate constant...
The conversion of C5H11Br into C5H10 follows first-order kinetics, with a rate constant of 0.385 h-1....
The conversion of C5H11Br into C5H10 follows first-order kinetics, with a rate constant of 0.385 h-1. If the initial concentration of C5H11Br is 0.125 M, find: (a) the time(hours) at which the concentration will be 3.13 × 10-3 M. (b) the concentration(M) after 3.2 h of reaction.
2A → B + C The above reaction is run and found to follow first order...
2A → B + C The above reaction is run and found to follow first order kinetics with a rate constant of 1.30 x 10-3 sec-1. If the initial concentration of A is 1.56 M, what is the concentration after 133 seconds? 2A → B + C The above reaction is run and found to follow zero order kinetics with a rate constant of 1.30 x 10-3 M•sec-1. If the initial concentration of A is 1.51 M, what is the...
A) 2A → B + C The above reaction is run and found to follow first...
A) 2A → B + C The above reaction is run and found to follow first order kinetics with a rate constant of 1.30 x 10-3 sec-1. If the initial concentration of A is 1.72 M, what is the concentration after 152 seconds? B) 2A → B + C The above reaction is run and found to follow second order kinetics with a rate constant of 1.30 x 10-3 M-1sec-1. If the initial concentration of A is 1.66 M, what...
The follow second order, irreversible gas phase reaction AB --> A + B, where k=2.0X10^4 cm^3/mol.min...
The follow second order, irreversible gas phase reaction AB --> A + B, where k=2.0X10^4 cm^3/mol.min is allowed to decompose isothermally in a constant pressure batch reactor. The reactor initially contains pure AB with a volume of 2.0 m^3 at 2.5 atm and 500 C. Assume ideal behavior, determine the time for the reaction to reach 70% conversion (Given R = 82.05 atm cm^3/mol.K) Answer= 4.39 min.
A second order reaction, A>3B+C, has a rate constant of 1.37*10^-2M^-1s^-1. What will be the concentration...
A second order reaction, A>3B+C, has a rate constant of 1.37*10^-2M^-1s^-1. What will be the concentration of B after 50.0s, if [A]initial=0.250M, [B]initial=0.164 and [C]initial=0.51.
A homogeneous liquid phase reaction A -> R, rA = -kCA^2 takes place with 50% conversion...
A homogeneous liquid phase reaction A -> R, rA = -kCA^2 takes place with 50% conversion in a mixed reactor (CSTR). What will be the conversion if this reactor is replaced by one 6 times as large-all else remaining unchanged?
The decomposition reaction of NOBr is second order in NOBr, with a rate constant at 20°C...
The decomposition reaction of NOBr is second order in NOBr, with a rate constant at 20°C of 25 M-1 min-1. If the initial concentration of NOBr is 0.025 M, find (a) the time at which the concentration will be 0.010 M. (b) the concentration after 145 min of reaction.