Question

2A → B + C The above reaction is run and found to follow second order...

2A → B + C

The above reaction is run and found to follow second order kinetics with a rate constant of 1.30 x 10-3 M-1sec-1. If the initial concentration of A is 1.45 M, what is the concentration after 142 seconds?

Homework Answers

Answer #1

Since the reaction is second order and we have to find final concentration after 142 second, we can use integrated rate equation for the second order.

Equation:

1/[A]t = kt + 1/ [A]0

Here subscript t and 0 are shown for concentration at time t and present initially respectively.

k is rate constant and t is time.

Lets plug in the given values in order to get [A]t

1/[A]t = (1.30 E-3 per M per s x 142 s ) + 1/ 1.45 M

We have to calculate value of [A]t

[A]t= 1.14 M

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A) 2A → B + C The above reaction is run and found to follow first...
A) 2A → B + C The above reaction is run and found to follow first order kinetics with a rate constant of 1.30 x 10-3 sec-1. If the initial concentration of A is 1.72 M, what is the concentration after 152 seconds? B) 2A → B + C The above reaction is run and found to follow second order kinetics with a rate constant of 1.30 x 10-3 M-1sec-1. If the initial concentration of A is 1.66 M, what...
1.) 2A → B + C The above reaction is run and found to follow second...
1.) 2A → B + C The above reaction is run and found to follow second order kinetics with a rate constant of 1.30 x 10-3 M-1sec-1. If the initial concentration of A is 1.33 M, what is the concentration after 164 seconds? 2.) 2A → B + C Two trials of the above reaction are run with the same initial concentration of A. The first trial is performed at 25oC and the second at 35oC. If the rate constant...
2A → B + C The above reaction is run and found to follow first order...
2A → B + C The above reaction is run and found to follow first order kinetics with a rate constant of 1.30 x 10-3 sec-1. If the initial concentration of A is 1.56 M, what is the concentration after 133 seconds? 2A → B + C The above reaction is run and found to follow zero order kinetics with a rate constant of 1.30 x 10-3 M•sec-1. If the initial concentration of A is 1.51 M, what is the...
A) 2A → B + C The above reaction is run and it is found that...
A) 2A → B + C The above reaction is run and it is found that a plot of the concentration of A versus time is linear as the reaction proceeds. This indicates that the reaction is ... zero order in [A] first order in [A] second order in [A] third order in [A] B)2A → B + C The above reaction is run and it is found that a plot of the natural log of the concentration versus time...
The reaction: A -> B+C is known to be second order with respect to A and...
The reaction: A -> B+C is known to be second order with respect to A and to have a rate constant of 0.225 M-1s-1 at 277 K. An experiment was run at this temperature where [A]o = 0.387 M. Calculate the concentration of B after 0.119 seconds has elapsed.
1. Given the reaction 2A + 3B à C + 4D the reaction is zeroth order...
1. Given the reaction 2A + 3B à C + 4D the reaction is zeroth order with respect to A and second order with respect to B. If the concentration of both A and B are doubled and the temperature remains unchanged, the rate of the reaction will increase by a factor of what?   Why? 2.      The kinetics of the reaction A+B à P were studied. The following data was collected. What is the rate law for this reaction?   Why?...
Be sure to answer all parts. The reaction 2A → B is second order in A...
Be sure to answer all parts. The reaction 2A → B is second order in A with a rate constant of 27.9 M−1 · s−1 at 25°C. (a) Starting with [A]0 = 0.00737 M, how long will it take for the concentration of A to drop to 0.00180 M? s (b) Calculate the half-life of the reaction for [A]0 = 0.00737M. s (c) Calculate the half-life of the reaction for [A]0 = 0.00207 M. s
The reaction: A → B + C is known to be second order with respect to...
The reaction: A → B + C is known to be second order with respect to A and to have a rate constant of 0.00255 M-1 s-1 at 285 K. It is also known that ΔGorxn for this reaction is -2.13 kJ. An experiment was run at this temperature where only reactants were present ([A]o = 0.331 M). Calculate ΔGnonstandard after 14.1 seconds has elapsed.
The reaction 2H2O2(l)=2H2O(l) + O2(g) is found experimentally to follow first-order kinetics with a rate constant...
The reaction 2H2O2(l)=2H2O(l) + O2(g) is found experimentally to follow first-order kinetics with a rate constant of 0.030s-1. The concentration of peroxide, H2O2(l) after 25s is found to be 0.010M. What was the intial concentration of H2O2(l) from these data?
A second‐order reaction was observed. The reaction rate constant at 3 °C was found to be...
A second‐order reaction was observed. The reaction rate constant at 3 °C was found to be 8.9 x 10‐3 L/mol and 7.1 x 10‐2 L/mol at 35 °C. What is the activation energy of this reaction? 
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT