Question

50%conversion is obtained in a CSTR for a homogenous, isothermal, liquid phase, irreversible second order reaction....

50%conversion is obtained in a CSTR for a homogenous, isothermal, liquid phase, irreversible second order reaction. What is the conversion if the reactor volume is five times the original, all else remaining unchanged?

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A homogeneous liquid phase reaction A -> R, rA = -kCA^2 takes place with 50% conversion...
A homogeneous liquid phase reaction A -> R, rA = -kCA^2 takes place with 50% conversion in a mixed reactor (CSTR). What will be the conversion if this reactor is replaced by one 6 times as large-all else remaining unchanged?
An isothermal CSTR with a first order irreversible reaction A —> B and rA = 0.14...
An isothermal CSTR with a first order irreversible reaction A —> B and rA = 0.14 mol/(ft3*min) has a constant flow rate of 11 f3/min. The reactor volume is 100 ft3. The inlet concentration CAi changes from 6 to 5.5 moles/ft3 (a step change). (a) Determine the process time constant. (b) Determine the steady state gain.
The irreversible gas-phase non-elementary reaction A + 2B ---> C takes place in an isothermal (227...
The irreversible gas-phase non-elementary reaction A + 2B ---> C takes place in an isothermal (227 C) constant-volume batch reactor. The initial feed to the reactor consists of 40 mol% A and 60 mol% B at a total pressure of 10 atm. Measurements of the rate of reaction as a function of conversion yielded the following results: -rA (mol dm^-3 s^-1) x (1x10^8) 0.010 0.005 0.002 0.001 XA   0.0 0.2 0.4 0.6 Calculate the time required to achieve a conversion...
The follow second order, irreversible gas phase reaction AB --> A + B, where k=2.0X10^4 cm^3/mol.min...
The follow second order, irreversible gas phase reaction AB --> A + B, where k=2.0X10^4 cm^3/mol.min is allowed to decompose isothermally in a constant pressure batch reactor. The reactor initially contains pure AB with a volume of 2.0 m^3 at 2.5 atm and 500 C. Assume ideal behavior, determine the time for the reaction to reach 70% conversion (Given R = 82.05 atm cm^3/mol.K) Answer= 4.39 min.
The elementary irreversible organic liquid-phase reaction, A + B → C, is carried out in a...
The elementary irreversible organic liquid-phase reaction, A + B → C, is carried out in a flow reactor. An equal molar feed in A and B enters at 27 oC, and the volumetric flow rate is 2 L/s. The feed concentration is CA0 = 0.1 mol/L. a) Calculate the PFR and CSTR volumes necessary to achieve 85% conversion when the reaction is carried out adiabatically. b) What is the maximum inlet temperature one could have so that the boiling point...
The irreversible gas-phase reaction A + B ----> C is carried out in an isothermal (400...
The irreversible gas-phase reaction A + B ----> C is carried out in an isothermal (400 C) constant-pressure (1 atm) batch reactor in the presence of inerts (I). The initial gas composition in mole fractions is given by yA0 = 0.40; yB0 = 0.40; yC0 = 0.10; yI = 0.10. The reaction is first-order both in A and in B with a rate constant, k = 3.46 x10-2 dm3mol-1 s-1 at 400 C. (a) Set up a stoichiometric table. (b)...
Consider a reaction of species A to form product B in a constant-density isothermal system. The...
Consider a reaction of species A to form product B in a constant-density isothermal system. The rate of disappearance of A is given by a second-order rate, that is, (-rA) = kCA2. A process plant carries out the reaction using a single PFR with 95% conversion of A. To increase production, a second reactor is added. The second reactor is to have the same volume as the first one, and the overall conversion from the system of two reactors is...
A liquid phase reaction A+B --> C+D is to be carried out in an isothermal and...
A liquid phase reaction A+B --> C+D is to be carried out in an isothermal and well mixed batch reactor. The initial moles of A and B are both 0.1 mole.  The rate of destruction of A is given by –rA = k*CA*CB, with k =  6.0 L/ (mol*min).  Calculate the amount of time (in minutes) that the reaction must proceed within a 10 L reactor in order to achieve a final concentration of A of 0.001 mol/L. Please express your answer to...
Consider a plug flow reactor with a reversible isothermal gas-phase reaction: A + B <--> C...
Consider a plug flow reactor with a reversible isothermal gas-phase reaction: A + B <--> C The reactor feed consists of a mixture of 50% A and 50% B. The reaction rate is: (-rA) = k1*CA*CB - k2*CC2 The inlet temperature is 500 K and the total pressure is 200 kPa. The volumetric feed flow rate is 10 m3/s. The rate constants have a values of: k1 = 0.1 m3/(mol*s) and k2 = 0,05 m3/(mol*s). a) Calculate the conversion of...
A liquid-phase reaction A---> B is to be conducted in a CSTR at steady-state at 163°C....
A liquid-phase reaction A---> B is to be conducted in a CSTR at steady-state at 163°C. The temperature of the feed is 20°C, and 90% conversion of A is required. Determine the volume of a CSTR (L) to produce 130 kg of B per hour, and calculate the heat load (kW) for the process. Does this represent addition or removal of heat from the system? Data: cp,A = 2.0 J/g·K MW of A = 200 g/mol ? = 0.95 g/cm3...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT