Question

50%conversion is obtained in a CSTR for a homogenous, isothermal, liquid phase, irreversible second order reaction....

50%conversion is obtained in a CSTR for a homogenous, isothermal, liquid phase, irreversible second order reaction. What is the conversion if the reactor volume is five times the original, all else remaining unchanged?

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A homogeneous liquid phase reaction A -> R, rA = -kCA^2 takes place with 50% conversion...
A homogeneous liquid phase reaction A -> R, rA = -kCA^2 takes place with 50% conversion in a mixed reactor (CSTR). What will be the conversion if this reactor is replaced by one 6 times as large-all else remaining unchanged?
An isothermal CSTR with a first order irreversible reaction A —> B and rA = 0.14...
An isothermal CSTR with a first order irreversible reaction A —> B and rA = 0.14 mol/(ft3*min) has a constant flow rate of 11 f3/min. The reactor volume is 100 ft3. The inlet concentration CAi changes from 6 to 5.5 moles/ft3 (a step change). (a) Determine the process time constant. (b) Determine the steady state gain.
The irreversible gas-phase non-elementary reaction A + 2B ---> C takes place in an isothermal (227...
The irreversible gas-phase non-elementary reaction A + 2B ---> C takes place in an isothermal (227 C) constant-volume batch reactor. The initial feed to the reactor consists of 40 mol% A and 60 mol% B at a total pressure of 10 atm. Measurements of the rate of reaction as a function of conversion yielded the following results: -rA (mol dm^-3 s^-1) x (1x10^8) 0.010 0.005 0.002 0.001 XA   0.0 0.2 0.4 0.6 Calculate the time required to achieve a conversion...
The follow second order, irreversible gas phase reaction AB --> A + B, where k=2.0X10^4 cm^3/mol.min...
The follow second order, irreversible gas phase reaction AB --> A + B, where k=2.0X10^4 cm^3/mol.min is allowed to decompose isothermally in a constant pressure batch reactor. The reactor initially contains pure AB with a volume of 2.0 m^3 at 2.5 atm and 500 C. Assume ideal behavior, determine the time for the reaction to reach 70% conversion (Given R = 82.05 atm cm^3/mol.K) Answer= 4.39 min.
The elementary irreversible organic liquid-phase reaction, A + B → C, is carried out in a...
The elementary irreversible organic liquid-phase reaction, A + B → C, is carried out in a flow reactor. An equal molar feed in A and B enters at 27 oC, and the volumetric flow rate is 2 L/s. The feed concentration is CA0 = 0.1 mol/L. a) Calculate the PFR and CSTR volumes necessary to achieve 85% conversion when the reaction is carried out adiabatically. b) What is the maximum inlet temperature one could have so that the boiling point...
The irreversible gas-phase reaction A + B ----> C is carried out in an isothermal (400...
The irreversible gas-phase reaction A + B ----> C is carried out in an isothermal (400 C) constant-pressure (1 atm) batch reactor in the presence of inerts (I). The initial gas composition in mole fractions is given by yA0 = 0.40; yB0 = 0.40; yC0 = 0.10; yI = 0.10. The reaction is first-order both in A and in B with a rate constant, k = 3.46 x10-2 dm3mol-1 s-1 at 400 C. (a) Set up a stoichiometric table. (b)...
Consider a reaction of species A to form product B in a constant-density isothermal system. The...
Consider a reaction of species A to form product B in a constant-density isothermal system. The rate of disappearance of A is given by a second-order rate, that is, (-rA) = kCA2. A process plant carries out the reaction using a single PFR with 95% conversion of A. To increase production, a second reactor is added. The second reactor is to have the same volume as the first one, and the overall conversion from the system of two reactors is...
The isothermal and isobaric gas phase reaction A → B + C follows an elementary rate...
The isothermal and isobaric gas phase reaction A → B + C follows an elementary rate law and is to be carried out in a CSTR. The reaction constant k = 1.20 s-1 when the reaction temperature T = 300 K. (a) When pure A is fed to a CSTR at 300K and a volumetric flow rate of 5 dm3 /s,a conversion of X = 0.6 is achieved. Please determine the volume of the CSTR. (b) If the CSTR’s volume...
A liquid phase reaction A+B --> C+D is to be carried out in an isothermal and...
A liquid phase reaction A+B --> C+D is to be carried out in an isothermal and well mixed batch reactor. The initial moles of A and B are both 0.1 mole.  The rate of destruction of A is given by –rA = k*CA*CB, with k =  6.0 L/ (mol*min).  Calculate the amount of time (in minutes) that the reaction must proceed within a 10 L reactor in order to achieve a final concentration of A of 0.001 mol/L. Please express your answer to...
Mainly a Chemical Engineering Q A liquid phase reaction: A+B→C the reaction is first order with...
Mainly a Chemical Engineering Q A liquid phase reaction: A+B→C the reaction is first order with respect to component A with k = 0.311 min-1. The total entering volumetric flow rate of the reactants (A and B) is 2 dm3s-1. (a) If 80% is to be achieved, determine the necessary CSTR volume. (b) If two-800 dm3 reactors were arranged in series, what would be the corresponding conversion?