Question

A second order reaction, A>3B+C, has a rate constant of 1.37*10^-2M^-1s^-1. What will be the concentration...

A second order reaction, A>3B+C, has a rate constant of 1.37*10^-2M^-1s^-1. What will be the concentration of B after 50.0s, if [A]initial=0.250M, [B]initial=0.164 and [C]initial=0.51.

Homework Answers

Answer #1

step 1: find concentration of A after 50.0 s
we have:
[A]o = 0.25 M
t = 50.0 s
k = 1.37*10^-2 M-1.s-1
Given:
[A]o = 0.25 M

use integrated rate law for 2nd order reaction
1/[A] = 1/[A]o + k*t
1/[A] = 1/(0.25) + 1.37*10^-2*50
1/[A] = 4 + 1.37*10^-2*50
1/[A] = 4.685
[A] = 0.2134 M


step 2:
decrease in A = 0.250 - 0.2134 = 0.0366 M
increase in B = 3*decrease in A
= 3*0.0366 M
= 0.1098 M

step 3:
[B] = initial + increase
= 0.164 + 0.1098
= 0.274 M

Answer: 0.274 M

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
The thermal decomposition of acetaldehyde, CH3CHO --> CH4 + CO, is a second-order reaction. The rate...
The thermal decomposition of acetaldehyde, CH3CHO --> CH4 + CO, is a second-order reaction. The rate constant is 1.55x10-4 M-1s-1 at 25oC. If the initial concentration of CH3CHO is 0.250M. What will the concentration be after 2.50 hours?
A zero-order reaction has a constant rate of 3.20×10−4M/s. If after 45.0 seconds the concentration has...
A zero-order reaction has a constant rate of 3.20×10−4M/s. If after 45.0 seconds the concentration has dropped to 3.50×10−2M, what was the initial concentration?
Part A A certain first-order reaction (A→products) has a rate constant of 7.20×10−3 s−1 at 45...
Part A A certain first-order reaction (A→products) has a rate constant of 7.20×10−3 s−1 at 45 ∘C. How many minutes does it take for the concentration of the reactant, [A], to drop to 6.25% of the original concentration? Express your answer with the appropriate units. Answer: 6.42 min Part B A certain second-order reaction (B→products) has a rate constant of 1.35×10−3M−1⋅s−1 at 27 ∘Cand an initial half-life of 236 s . What is the concentration of the reactant B after...
A certain second-order reaction (B→products) has a rate constant of 1.60×10−3 M−1⋅s−1 at 27 ∘C and...
A certain second-order reaction (B→products) has a rate constant of 1.60×10−3 M−1⋅s−1 at 27 ∘C and an initial half-life of 296 s . What is the concentration of the reactant B after one half-life?
1)A second order reaction has a rate constant of 3.7 M-1min-1. if the initial concentration of...
1)A second order reaction has a rate constant of 3.7 M-1min-1. if the initial concentration of the reactant is 0.0100M, what is the concentration remaining after 15 min? a) .0099M b) .0056M c) .0025M d) .0064M 2) the rate constant for the first order decomposition of A at 500 degrees Celsius is 9.2 x 10 to the negative 3rd powers s-1. How long will it take for 90.8 % of a 0.500M sample of A to decompose a) 2.5 x...
A) The rate constant for a certain reaction is k = 2.60×10−3 s−1 . If the...
A) The rate constant for a certain reaction is k = 2.60×10−3 s−1 . If the initial reactant concentration was 0.200 M, what will the concentration be after 16.0 minutes B)A zero-order reaction has a constant rate of 4.20×10−4M/s. If after 60.0 seconds the concentration has dropped to 9.00×10−2M, what was the initial concentration
The integrated rate laws for zero-, first-, and second-order reaction may be arranged such that they...
The integrated rate laws for zero-, first-, and second-order reaction may be arranged such that they resemble the equation for a straight line,y=mx+b. Order Integrated Rate Law Graph Slope 0 [A]=−kt+[A]0 [A] vs. t −k 1 ln[A]=−kt+ln[A]0 ln[A] vs. t −k 2 1[A]= kt+1[A]0 1[A] vs. t k ------------ Part A The reactant concentration in a zero-order reaction was 5.00×10−2M after 110 s and 4.00×10−2M after 375 s . What is the rate constant for this reaction? ---------- Part B...
The integrated rate laws for zero-, first-, and second-order reaction may be arranged such that they...
The integrated rate laws for zero-, first-, and second-order reaction may be arranged such that they resemble the equation for a straight line,y=mx+b. 1.) The reactant concentration in a zero-order reaction was 6.00×10−2M after 165 s and 3.50×10−2Mafter 385 s . What is the rate constant for this reaction? 2.)What was the initial reactant concentration for the reaction described in Part A? 3.)The reactant concentration in a first-order reaction was 6.70×10−2 M after 40.0 s and 2.50×10−3Mafter 95.0 s ....
The integrated rate laws for zero-, first-, and second-order reaction may be arranged such that they...
The integrated rate laws for zero-, first-, and second-order reaction may be arranged such that they resemble the equation for a straight line,y=mx+b. Order Integrated Rate Law Graph Slope 0 [A]=−kt+[A]0 [A] vs. t −k 1 ln[A]=−kt+ln[A]0 ln[A] vs. t −k 2 1[A]= kt+1[A]0 1[A] vs. t k Part A The reactant concentration in a zero-order reaction was 7.00×10−2M after 135 s and 2.50×10−2M after 315 s . What is the rate constant for this reaction? Express your answer with...
Part A: The rate constant for a certain reaction is k = 6.90×10−3 s−1 . If...
Part A: The rate constant for a certain reaction is k = 6.90×10−3 s−1 . If the initial reactant concentration was 0.700 M, what will the concentration be after 9.00 minutes Part B: A zero-order reaction has a constant rate of 4.90×10−4M/s. If after 45.0 seconds the concentration has dropped to 7.00×10−2M, what was the initial concentration?
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT