Question

A homogeneous liquid phase reaction A -> R, rA = -kCA^2 takes place with 50% conversion...

A homogeneous liquid phase reaction A -> R, rA = -kCA^2 takes place with 50% conversion in a mixed reactor (CSTR). What will be the conversion if this reactor is replaced by one 6 times as large-all else remaining unchanged?

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
50%conversion is obtained in a CSTR for a homogenous, isothermal, liquid phase, irreversible second order reaction....
50%conversion is obtained in a CSTR for a homogenous, isothermal, liquid phase, irreversible second order reaction. What is the conversion if the reactor volume is five times the original, all else remaining unchanged?
Task # 3 the first order reaction A → B, with –rA = kCA, takes place...
Task # 3 the first order reaction A → B, with –rA = kCA, takes place in a liquid phase in a CSTR reactor witha volume of 10 l. The velocity constant k equals 2.5 min-1 CA=0.0672 mol/L 3.2 There is an operating accident where the feed flow with A is interrupted and the concentration of A drops to 0 inreactor. How long will it take for the feed to resume (ν0 = 0.12 l / s, CA0 = 0.3mol...
The elementary liquid phase reaction takes place in an adiabatic flow reactor. ? + ? →...
The elementary liquid phase reaction takes place in an adiabatic flow reactor. ? + ? → ? An equimolar feed in A and B enters at 300K, and the volumetric flow rate is 2 dm3 /s and CA0= 100 mol/m3 . a) Calculate the PFR and CSTR volumes to achieve 75 % conversion. b) If the outlet temperature of the reactor is 550 K, for complete conversion, calculate the inlet temperature of CSTR. HA°(273 K) = - 20 kcal/mol, HB°...
Express the rate of reaction (-rA) solely as a function of conversion for a gas-phase reaction,...
Express the rate of reaction (-rA) solely as a function of conversion for a gas-phase reaction, A → B + 2C, in a plug flow reactor. The feed contains 50% of inert gas. What is the total species concentration in the effluent at 80% conversion relative to the initial concentration of all species (i.e., what is CT/CTo)?
Problem 1 Consider the liquid phase reaction A à products accelerated by a homogeneous catalyst dissolved...
Problem 1 Consider the liquid phase reaction A à products accelerated by a homogeneous catalyst dissolved in the solution. The observed rate data follows the form: -r=k1Ca/(1+K2Ca+K3(Ca^2)) You are asked to recommend either a steady CSTR or steady PFR. Your reactor must reduce the feed composition of 0.6 mole/liter down to 0.3 mole/liter in the effluent. • Create a plot of ordinate 1/(-rA) vs. abscissa CA. Use the data below. Use sufficient resolution in your plot to get a smooth...
The irreversible gas-phase non-elementary reaction A + 2B ---> C takes place in an isothermal (227...
The irreversible gas-phase non-elementary reaction A + 2B ---> C takes place in an isothermal (227 C) constant-volume batch reactor. The initial feed to the reactor consists of 40 mol% A and 60 mol% B at a total pressure of 10 atm. Measurements of the rate of reaction as a function of conversion yielded the following results: -rA (mol dm^-3 s^-1) x (1x10^8) 0.010 0.005 0.002 0.001 XA   0.0 0.2 0.4 0.6 Calculate the time required to achieve a conversion...
he elementary liquid-phase reaction: A + B -----> C is to be carried out non-isothermally in...
he elementary liquid-phase reaction: A + B -----> C is to be carried out non-isothermally in a flow system with reaction constant,k= 0.07 dm^3mol-1min-1at 300K. The concentrations of each feed stream of A and B is 2 mol dm-3. The volumetric flow rate of each feed stream is 5 dm^3min-1. The two steams are mixed immediately prior to entering the reactor system. This flow system is conducted at 300K with two reactors: a 200 dm^3 stainless steel CSTR and an...
A liquid phase reaction A+B --> C+D is to be carried out in an isothermal and...
A liquid phase reaction A+B --> C+D is to be carried out in an isothermal and well mixed batch reactor. The initial moles of A and B are both 0.1 mole.  The rate of destruction of A is given by –rA = k*CA*CB, with k =  6.0 L/ (mol*min).  Calculate the amount of time (in minutes) that the reaction must proceed within a 10 L reactor in order to achieve a final concentration of A of 0.001 mol/L. Please express your answer to...
Question 2: a- Consider the elementary liquid-phase reaction: A ? B Taking place in A PFR....
Question 2: a- Consider the elementary liquid-phase reaction: A ? B Taking place in A PFR. Determine the space-time taken to reach 80% conversion of A. The value of k is 2.3 s -1 . b- The first-order reaction A? B is carried out in a batch reactor with k = 0.3 min-1 , what is the time (in min) required to consume 90% of A? c- Plot the conversion X against time for the reaction described in b by...
The following gas-phase reaction takes place in a plug flow reactor (a tubular reactor) that has...
The following gas-phase reaction takes place in a plug flow reactor (a tubular reactor) that has a diameter of 6 inches and cross-sectional area of 0.0388 ft2: A --> B + C. The reaction rate depends only on the concentration of A, CA, and has the following form: rate of destruction of A = k * CA , where k= 0.12 s-1. The feed consists of pure A, and enters the reactor at a volumetric flowrate of 0.193 ft3/s. Determine...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT