Question

Determine if H is subgroup of G, if so prove it, if not explain 1. H...

Determine if H is subgroup of G, if so prove it, if not explain

1. H = {A in GL(2,c): det(A)3 =1}, G = GL(2,c) with matrix multiplication

2. H = {A belongs to GL(n,IR): get(A)=-1}, G=GL(n,IR) with matrix multiplication

3. H = {A belongs to GL(2,IR): AAT=I}, G=GL(2,IR) with matrix multiplication

Homework Answers

Answer #1

In part 3

AA^T=I and since rank(A)=rank(AA^T) implies rank(A)=n

Hence A^-1 exists.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Prove that if A is a subgroup of G and B is a subgroup of H,...
Prove that if A is a subgroup of G and B is a subgroup of H, then the direct product A × B is a subgroup of G × H. Show all steps. Note that AXB is nonempty since the identity e is a part of A X B. Remains only to show that A X B is closed under multiplication and inverses.
If N is a normal subgroup of G and H is any subgroup of G, prove...
If N is a normal subgroup of G and H is any subgroup of G, prove that NH is a subgroup of G.
Let H be a subgroup of G, and N be the normalizer of H in G...
Let H be a subgroup of G, and N be the normalizer of H in G and C be the centralizer of H in G. Prove that C is normal in N and the group N/C is isomorphic to a subgroup of Aut(H).
If H is a normal subgroup of G and |H| = 2, prove that H is...
If H is a normal subgroup of G and |H| = 2, prove that H is contained in the center of G.
Let G be a finite group and H be a subgroup of G. Prove that if...
Let G be a finite group and H be a subgroup of G. Prove that if H is only subgroup of G of size |H|, then H is normal in G.
Let G be an Abelian group and H a subgroup of G. Prove that G/H is...
Let G be an Abelian group and H a subgroup of G. Prove that G/H is Abelian.
Suppose : phi :G -H is a group isomorphism . If N is a normal subgroup...
Suppose : phi :G -H is a group isomorphism . If N is a normal subgroup of G then phi(N) is a normal subgroup of H. Prove it is a subgroup and prove it is normal?
Let H and K be subgroups of G. Prove that H ∪ K is a subgroup...
Let H and K be subgroups of G. Prove that H ∪ K is a subgroup of G iff H ⊆ K or K ⊆ H.
Show that if G is a group, H a subgroup of G with |H| = n,...
Show that if G is a group, H a subgroup of G with |H| = n, and H is the only subgroup of G of order n, then H is a normal subgroup of G. Hint: Show that aHa-1 is a subgroup of G and is isomorphic to H for every a ∈ G.
(b) If H is a p-subgroup of a finite group G, prove that H is contained...
(b) If H is a p-subgroup of a finite group G, prove that H is contained in a Sylow p-subgroup of G. [Hint: Consider the H-conjugacy class equation for the set of all Sylowp-subgroups of G.]
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT