Question

Let P = (X1, X2) be a randomly selected point in the unit square [0, 1]...

Let P = (X1, X2) be a randomly selected point in the unit square [0, 1] 2. Let

X = min(X1, X2), Y = max(X1, X2)


(a) Find the c.d.f Fx and the density function fx, of the random variable X.

(b) Find the probability P (Y − X ≤ 1/2).

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Suppose that X1 and X2 are independent continuous random variables with the same probability density function...
Suppose that X1 and X2 are independent continuous random variables with the same probability density function as: f(x) = ( x 2 0 < x < 2, 0 otherwise. Let a new random variable be Y = min(X1, X2,). a) Use distribution function method to find the probability density function of Y, fY (y). b) Compute P(Y > 1).
Suppose that X1 and X2 are independent continuous random variables with the same probability density function...
Suppose that X1 and X2 are independent continuous random variables with the same probability density function as: f(x) = ( x 2 0 < x < 2, 0 otherwise. Let a new random variable be Y = min(X1, X2,). a) Use distribution function method to find the probability density function of Y, fY (y). b) Compute P(Y > 1). c) Compute E(Y )
Let X1 and X2 be a sample from a uniform distribution on [0, 1] and let...
Let X1 and X2 be a sample from a uniform distribution on [0, 1] and let Y1 = min{X1, X2}, Y2 = max{X1, X2}. Find fY1 (y1|Y2 = y2). A. 1/ 2 B. 1 / 2y2 C. 1 /y2 D. 2 E. 1
Suppose X1 and X2 are independent expon(λ) random variables. Let Y = min(X1, X2) and Z...
Suppose X1 and X2 are independent expon(λ) random variables. Let Y = min(X1, X2) and Z = max(X1, X2). (a) Show that Y ∼ expon(2λ) (b) Find E(Y ) and E(Z). (c) Find the conditional density fZ|Y (z|y). (d) FindP(Z>2Y).
Let X1 and X2 have the joint pdf f(x1,x2) = 8x1x2    0<x1 <x2 <1 0....
Let X1 and X2 have the joint pdf f(x1,x2) = 8x1x2    0<x1 <x2 <1 0. elsewhere What are the marginal pdfs of x1 and x2? Find the expected values of x1 and x2. 3.   What is the expected value of X1X2? (Hint: Define g(X1, X2) = X1X2 and extend the definition of expectation of function of a random variable to two variables as follows: E[g(X1, X2)] = ? ? g(x1, x2)f(x1, x2)dx1dx2. 4. Suppose that Y = X1/X2. What...
Let X1,X2,...,Xn be a random sample from a geometric random variable with parameter p. What is...
Let X1,X2,...,Xn be a random sample from a geometric random variable with parameter p. What is the density function ofU = min({X1,X2,...,Xn})
Consider n independent variables, {X1, X2, . . . , Xn} uniformly distributed over the unit...
Consider n independent variables, {X1, X2, . . . , Xn} uniformly distributed over the unit interval, (0, 1). Introduce two new random variables, M = max (X1, X2, . . . , Xn) and N = min (X1, X2, . . . , Xn). (A) Find the joint distribution of a pair (M, N). (B) Derive the CDF and density for M. (C) Derive the CDF and density for N. (D) Find moments of first and second order for...
Let X be a randomly selected real number from the interval [0, 1]. Let Y be...
Let X be a randomly selected real number from the interval [0, 1]. Let Y be a randomly selected real number from the interval [X, 1]. a) Find the joint density function for X and Y. b) Find the marginal density for Y. c) Does E(Y) exist? Explain without calculation. Then find E(Y).
Let X1, X2, ..., Xn be a random sample from a distribution with probability density function...
Let X1, X2, ..., Xn be a random sample from a distribution with probability density function f(x; θ) = (θ 4/6)x 3 e −θx if 0 < x < ∞ and 0 otherwise where θ > 0 . a. Justify the claim that Y = X1 + X2 + ... + Xn is a complete sufficient statistic for θ. b. Compute E(1/Y ) and find the function of Y which is the unique minimum variance unbiased estimator of θ. b.  Compute...
Let X1,X2,...,X50 denote a random sample of size 50 from the distribution whose probability density function...
Let X1,X2,...,X50 denote a random sample of size 50 from the distribution whose probability density function is given by f(x) =(5e−5x, if x ≥ 0 0, otherwise If Y = X1 + X2 + ... + X50, then approximate the P(Y ≥ 12.5).
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT