Question

Show that if G is a group, H a subgroup of G with |H| = n,...

Show that if G is a group, H a subgroup of G with |H| = n, and H is the only subgroup of G of order n, then H is a normal subgroup of G.

Hint: Show that aHa-1 is a subgroup of G and is isomorphic to H for every a ∈ G.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Let G be a finite group and let H be a subgroup of order n. Suppose...
Let G be a finite group and let H be a subgroup of order n. Suppose that H is the only subgroup of order n. Show that H is normal in G. Hint: Consider the subgroup aHa-1 of G. Please explain in detail!
Let G be a finite group, and suppose that H is normal subgroup of G. Show...
Let G be a finite group, and suppose that H is normal subgroup of G. Show that, for every g ∈ G, the order of gH in G/H must divide the order of g in G. What is the order of the coset [4]42 + 〈[6]42〉 in Z42/〈[6]42〉? Find an example to show that the order of gH in G/H does not always determine the order of g in G. That is, find an example of a group G, and...
Suppose : phi :G -H is a group isomorphism . If N is a normal subgroup...
Suppose : phi :G -H is a group isomorphism . If N is a normal subgroup of G then phi(N) is a normal subgroup of H. Prove it is a subgroup and prove it is normal?
Let G be a finite group and H be a subgroup of G. Prove that if...
Let G be a finite group and H be a subgroup of G. Prove that if H is only subgroup of G of size |H|, then H is normal in G.
(a) Show that H =<(1234)> is a normal subgroup of G=S4 (b) Is the quotient group...
(a) Show that H =<(1234)> is a normal subgroup of G=S4 (b) Is the quotient group G/H abelian? Justify?
Let G be a non-trivial finite group, and let H < G be a proper subgroup....
Let G be a non-trivial finite group, and let H < G be a proper subgroup. Let X be the set of conjugates of H, that is, X = {aHa^(−1) : a ∈ G}. Let G act on X by conjugation, i.e., g · (aHa^(−1) ) = (ga)H(ga)^(−1) . Prove that this action of G on X is transitive. Use the previous result to prove that G is not covered by the conjugates of H, i.e., G does not equal...
Show that if H is a subgroup of index 2 in a finite group G, then...
Show that if H is a subgroup of index 2 in a finite group G, then every left coset of H is also a right coset of H. *** I have the answer but I am really looking for a thorough explanation. Thanks!
f H and K are subgroups of a group G, let (H,K) be the subgroup of...
f H and K are subgroups of a group G, let (H,K) be the subgroup of G generated by the elements {hkh−1k−1∣h∈H, k∈K}. Show that : H◃G if and only if (H,G)<H
The direct product group R × R has subgroup H = {(5a, a) | a c...
The direct product group R × R has subgroup H = {(5a, a) | a c R}. Show that group R is isomorphic with group H.
Let H be a subgroup of the group G. Define a set B by B =...
Let H be a subgroup of the group G. Define a set B by B = {x ∈ G | xax−1 ∈ H for all a ∈ H}. Show that H < B.
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT