Question

Let S = { e1, e2, e3, e4 } be the standard basis for R4 ,...

Let S = { e1, e2, e3, e4 } be the standard basis for R4 , and let B = { v1, v2, v3, v4, } be the basis with vi = T(ei ), where

T ( x1, x2, x3, x4 ) = (x2, x3, x4, x1 ). Find the transition matrices P B to S and P S to B.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Let V1 = R4 and V2 = R2. Let T : V1 → V2 be the...
Let V1 = R4 and V2 = R2. Let T : V1 → V2 be the map dened by T x1 x2 x3 x4 = x1 −x2 + x4 x1 + x2 + x3 + x4 . (a) Show that T is a linear transformation. (b) Let u1 = 1 0 0 −1 , u2 = 0 1 −2 1 .Show that ( u1, u2) is a basis of kerT. (c) Show that imT = V2. (Hint: Compute T(e1) and...
Find the coordinates of e1 e2 e3 of R3 in terms of [(1,0,0)T , (1,1,0)T ,...
Find the coordinates of e1 e2 e3 of R3 in terms of [(1,0,0)T , (1,1,0)T , (1,1,1)T ] of R3,, and then find the matrix of the linear transformation T(x1,, x2 , x3 )T = [(4xx+ x2- x3)T , (x1 + 3x3)T , (x2 + 2x3)T with respect to this basis.
Let v1=(0,1,2,3),v2=(1,0,-1,0),v3=(0,4,-1,2), and v4=(0,5,1,5). Let S=(v1,v2,v3,v4) (1)find a basis for span(S) (2)is the vector e1=(1,0,0,0) in...
Let v1=(0,1,2,3),v2=(1,0,-1,0),v3=(0,4,-1,2), and v4=(0,5,1,5). Let S=(v1,v2,v3,v4) (1)find a basis for span(S) (2)is the vector e1=(1,0,0,0) in the span of S? Why?
In this question, as usual, e1, e2, e3 are the standard basis vectors for R 3...
In this question, as usual, e1, e2, e3 are the standard basis vectors for R 3 (that is, ej has a 1 in the jth position, and has 0 everywhere else). (a) Suppose that D is a 3 × 3 diagonal matrix. Show that e1, e2, e3 are eigenvectors of D. (b) Suppose that A is a 3 × 3 matrix, and that e1, e2, and e3 are eigenvectors of A. Is it true that A must be a diagonal...
Suppose that we have a sample space with five equally likely experimental outcomes: E1, E2, E3,...
Suppose that we have a sample space with five equally likely experimental outcomes: E1, E2, E3, E4, E5. let a = {E1, E2} B = {E3, E4} C = {E2, E3, E5} a. Find P(a), P(B), and P(C). b. Find P(a ∙ B). Are a and B mutually exclusive? c. Find ac, Cc, P(ac), and P(Cc). d. Finda∙Bc andP(a∙Bc). e. Find P(B ∙ C ).
Find the standard matrix for the following transformation T : R 4 → R 3 :...
Find the standard matrix for the following transformation T : R 4 → R 3 : T(x1, x2, x3, x4) = (x1 − x2 + x3 − 3x4, x1 − x2 + 2x3 + 4x4, 2x1 − 2x2 + x3 + 5x4) (a) Compute T(~e1), T(~e2), T(~e3), and T(~e4). (b) Find an equation in vector form for the set of vectors ~x ∈ R 4 such that T(~x) = (−1, −4, 1). (c) What is the range of T?
Suppose that we have a sample space with five equally likely experimental outcomes: E1, E2, E3,...
Suppose that we have a sample space with five equally likely experimental outcomes: E1, E2, E3, E4, E5. Let A = {E2, E4} B = {E1, E3} C = {E1, E4, E5}. (a) Find P(A), P(B), and P(C). P(A)= P(B)= P(C)= (b) Find P(A ∪ B). P(A ∪ B) (c) Find AC. (Enter your answers as a comma-separated list.) AC = Find CC. (Enter your answers as a comma-separated list.) CC = Find P(AC) and P(CC). P(AC) = P(CC) =...
Let S = {v1,v2,v3,v4,v5} where v1= (1,−1,2,4), v2 = (0,3,1,2), v3 = (3,0,7,14), v4 = (1,−1,2,0),...
Let S = {v1,v2,v3,v4,v5} where v1= (1,−1,2,4), v2 = (0,3,1,2), v3 = (3,0,7,14), v4 = (1,−1,2,0), v5 = (2,1,5,6). Find a subset of S that forms a basis for span(S).
Let S = {v1, v2, v3, v4} be a given basis of R ^4 . Suppose...
Let S = {v1, v2, v3, v4} be a given basis of R ^4 . Suppose that A is a (3 × 4) matrix with the following properties: Av1 = 0, A(v1 + 2v4) = 0, Av2 =[ 1 1 1 ] T , Av3 = [ 0 −1 −4 ]T . Find a basis for N (A), and a basis for R(A). Fully justify your answer.
Consider the following equations: y1 = a1y2 +a2y3 +x1 +x2 +e1 (1) y2 = by1+2x3+x1+e2 (2)...
Consider the following equations: y1 = a1y2 +a2y3 +x1 +x2 +e1 (1) y2 = by1+2x3+x1+e2 (2) y3 =cy1+e3 (3) Here a1, a2, b, c are unknown parameters of interest, which are all posi- tive. x1, x2, x3 are exogenous variables (uncorrelated with y1, y2 or y3). e1, e2, e3 are error terms. (a) In equation (1), why y2,y3 are endogenous? (b) what is (are) the instrumental variable(s) for y2, y3 in equation (1)? (no need to explain why) (c) In...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT