Question

Let v1=(0,1,2,3),v2=(1,0,-1,0),v3=(0,4,-1,2), and v4=(0,5,1,5). Let S=(v1,v2,v3,v4) (1)find a basis for span(S) (2)is the vector e1=(1,0,0,0) in...

Let v1=(0,1,2,3),v2=(1,0,-1,0),v3=(0,4,-1,2), and v4=(0,5,1,5). Let S=(v1,v2,v3,v4)

(1)find a basis for span(S)

(2)is the vector e1=(1,0,0,0) in the span of S? Why?

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Let H=Span{v1,v2} and K=Span{v3,v4}, where v1,v2,v3,v4 are given below. v1 = [3 2 5], v2 =[4...
Let H=Span{v1,v2} and K=Span{v3,v4}, where v1,v2,v3,v4 are given below. v1 = [3 2 5], v2 =[4 2 6], v3 =[5 -1 1], v4 =[0 -21 -9] Then H and K are subspaces of R3 . In fact, H and K are planes in R3 through the origin, and they intersect in a line through 0. Find a nonzero vector w that generates that line. w = { _______ }
Let S = {v1,v2,v3,v4,v5} where v1= (1,−1,2,4), v2 = (0,3,1,2), v3 = (3,0,7,14), v4 = (1,−1,2,0),...
Let S = {v1,v2,v3,v4,v5} where v1= (1,−1,2,4), v2 = (0,3,1,2), v3 = (3,0,7,14), v4 = (1,−1,2,0), v5 = (2,1,5,6). Find a subset of S that forms a basis for span(S).
. Let v1,v2,v3,v4 be a basis of V. Show that v1+v2, v2+v3, v3+v4, v4 is a...
. Let v1,v2,v3,v4 be a basis of V. Show that v1+v2, v2+v3, v3+v4, v4 is a basis of V
If S is the set of vectors in R^4 (S= {v1, v2, v3, v4, v5}) where,...
If S is the set of vectors in R^4 (S= {v1, v2, v3, v4, v5}) where, v1 = (1,2,-1,1), v2 = (-3,0,-4,3), v3 = (2,1,1,-1), v4 = (-3,3,-9,-6), v5 = (3,9,7,-6) Find a subset of S that is a basis for the span(S).
If S=(v1,v2,v3,v4) is a linearly independent sequence of vectors in Rn then A) n = 4...
If S=(v1,v2,v3,v4) is a linearly independent sequence of vectors in Rn then A) n = 4 B) The matrix ( v1 v2 v3 v4) has a unique pivot column. C) S is a basis for Span(v1,v2,v3,v4)
Let S = {v1, v2, v3, v4} be a given basis of R ^4 . Suppose...
Let S = {v1, v2, v3, v4} be a given basis of R ^4 . Suppose that A is a (3 × 4) matrix with the following properties: Av1 = 0, A(v1 + 2v4) = 0, Av2 =[ 1 1 1 ] T , Av3 = [ 0 −1 −4 ]T . Find a basis for N (A), and a basis for R(A). Fully justify your answer.
Determine whether the given vectors span R3 V1=(-1,5,2), V2=(3,1,1), V3=(2,0,-2), V4=(4,1,0)
Determine whether the given vectors span R3 V1=(-1,5,2), V2=(3,1,1), V3=(2,0,-2), V4=(4,1,0)
Prove that Let S={v1,v2,v3} be a linearly indepedent set of vectors om a vector space V....
Prove that Let S={v1,v2,v3} be a linearly indepedent set of vectors om a vector space V. Then so are {v1},{v2},{v3},{v1,v2},{v1,v3},{v2,v3}
Let S = { e1, e2, e3, e4 } be the standard basis for R4 ,...
Let S = { e1, e2, e3, e4 } be the standard basis for R4 , and let B = { v1, v2, v3, v4, } be the basis with vi = T(ei ), where T ( x1, x2, x3, x4 ) = (x2, x3, x4, x1 ). Find the transition matrices P B to S and P S to B.
Consider four vectors v1 = [1,1,1,1], v2 = [-1,0,1,2], v3 = [a,1,0,b], and v4 = [3,2,a+b,0],...
Consider four vectors v1 = [1,1,1,1], v2 = [-1,0,1,2], v3 = [a,1,0,b], and v4 = [3,2,a+b,0], where a and b are parameters. Find all conditions on the values of a and b (if any) for which: 1. The number of linearly independent vectors in this collection is 1. 2. The number of linearly independent vectors in this collection is 2. 3. The number of linearly independent vectors in this collection is 3. 4. The number of linearly independent vectors in...