Question

Let V1 = R4 and V2 = R2. Let T : V1 → V2 be the...

Let V1 = R4 and V2 = R2. Let T : V1 → V2 be the map dened by T x1 x2 x3 x4 = x1 −x2 + x4 x1 + x2 + x3 + x4 . (a) Show that T is a linear transformation. (b) Let u1 = 1 0 0 −1 , u2 = 0 1 −2 1 .Show that ( u1, u2) is a basis of kerT. (c) Show that imT = V2. (Hint: Compute T(e1) and T(e2)).

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Let S = { e1, e2, e3, e4 } be the standard basis for R4 ,...
Let S = { e1, e2, e3, e4 } be the standard basis for R4 , and let B = { v1, v2, v3, v4, } be the basis with vi = T(ei ), where T ( x1, x2, x3, x4 ) = (x2, x3, x4, x1 ). Find the transition matrices P B to S and P S to B.
Problem 2. Show that T is a linear transformation by finding a matrix that implements the...
Problem 2. Show that T is a linear transformation by finding a matrix that implements the mapping. Note that x1, x2, ... are not vectors but are entries in vectors. (a) T(x1, x2, x3, x4) = (0, x1 + x2, x2 + x3, x3 + x4) (b) T(x1, x2, x3, x4) = 2x1 + 3x3 − 4x4 (T : R4 → R)​ Please show T is a linear transformation for part (a) and (b).
Let R4 have the inner product <u, v>  =  u1v1 + 2u2v2 + 3u3v3 + 4u4v4...
Let R4 have the inner product <u, v>  =  u1v1 + 2u2v2 + 3u3v3 + 4u4v4 (a) Let w  =  (0, 6, 4, 1). Find ||w||. (b) Let W be the subspace spanned by the vectors u1  =  (0, 0, 2, 1), and   u2  =  (3, 0, −2, 1). Use the Gram-Schmidt process to transform the basis {u1, u2} into an orthonormal basis {v1, v2}. Enter the components of the vector v2 into the answer box below, separated with commas.
consider the basis S={v1,v2} for R^2,where v1=(-2,1) and v2=(1,3),and let T:R^2-R^3 be linear transformation such that...
consider the basis S={v1,v2} for R^2,where v1=(-2,1) and v2=(1,3),and let T:R^2-R^3 be linear transformation such that T(v1)=(-1,2,0) And T(v2)=(0,-3,5), find T(2,-3)
Let T ∈ L(R2) be the linear transformation T(x1, x2) = (3x1 + 2x2, −4x1 −...
Let T ∈ L(R2) be the linear transformation T(x1, x2) = (3x1 + 2x2, −4x1 − 3x2), v = (1, −1), and p(z) = z^2 − 3z + 2. Compute p(T), show that p(T)v = 0, and show that NOT all the roots of p(z) are eigenvalues of T.
Find the coordinates of e1 e2 e3 of R3 in terms of [(1,0,0)T , (1,1,0)T ,...
Find the coordinates of e1 e2 e3 of R3 in terms of [(1,0,0)T , (1,1,0)T , (1,1,1)T ] of R3,, and then find the matrix of the linear transformation T(x1,, x2 , x3 )T = [(4xx+ x2- x3)T , (x1 + 3x3)T , (x2 + 2x3)T with respect to this basis.
10 Linear Transformations. Let V = R2 and W = R3. Define T: V → W...
10 Linear Transformations. Let V = R2 and W = R3. Define T: V → W by T(x1, x2) = (x1 − x2, x1, x2). Find the matrix representation of T using the standard bases in both V and W 11 Let T :R3 →R3 be a linear transformation such that T(1, 0, 0) = (2, 4, −1), T(0, 1, 0) = (1, 3, −2), T(0, 0, 1) = (0, −2, 2). Compute T(−2, 4, −1).
Find the standard matrix for the following transformation T : R 4 → R 3 :...
Find the standard matrix for the following transformation T : R 4 → R 3 : T(x1, x2, x3, x4) = (x1 − x2 + x3 − 3x4, x1 − x2 + 2x3 + 4x4, 2x1 − 2x2 + x3 + 5x4) (a) Compute T(~e1), T(~e2), T(~e3), and T(~e4). (b) Find an equation in vector form for the set of vectors ~x ∈ R 4 such that T(~x) = (−1, −4, 1). (c) What is the range of T?
(i) Let u= (u1,u2) and v= (v1,v2). Show that the following is an inner product by...
(i) Let u= (u1,u2) and v= (v1,v2). Show that the following is an inner product by verifying that the inner product hold <u,v>= 4u1v1 + u2v2 +4u2v2 (ii) Let u= (u1, u2, u3) and v= (v1,v2,v3). Show that the following is an inner product by verifying that the inner product hold <u,v> = 2u1v1 + u2v2 + 4u3v3
let v1=[1,0,10], v2=[0,1,0,1] and let W be the subspace of R^4 spanned by v1 and v2....
let v1=[1,0,10], v2=[0,1,0,1] and let W be the subspace of R^4 spanned by v1 and v2. A. convert {v1,v2} into an orhonormal basis of W. Basis = B.find the projection of b=[-1,-2,-2,-1] onto W C.find two linear independent vectors in R^4 perpendicular to W. vectors =
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT