Question

Find the coordinates of e1 e2 e3 of R3 in terms of [(1,0,0)T , (1,1,0)T ,...

Find the coordinates of e1 e2 e3 of R3 in terms of [(1,0,0)T , (1,1,0)T , (1,1,1)T ] of R3,, and then find the matrix of the linear transformation T(x1,, x2 , x3 )T = [(4xx+ x2- x3)T , (x1 + 3x3)T , (x2 + 2x3)T with respect to this basis.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Let S = { e1, e2, e3, e4 } be the standard basis for R4 ,...
Let S = { e1, e2, e3, e4 } be the standard basis for R4 , and let B = { v1, v2, v3, v4, } be the basis with vi = T(ei ), where T ( x1, x2, x3, x4 ) = (x2, x3, x4, x1 ). Find the transition matrices P B to S and P S to B.
7.18) Find the matrix of the cross product transformation Ca: R3-->R3 with respect to the standard...
7.18) Find the matrix of the cross product transformation Ca: R3-->R3 with respect to the standard basis in the following cases: 1) a = e1 2) a = e1 + e2 + e3
Find the standard matrix for the following transformation T : R 4 → R 3 :...
Find the standard matrix for the following transformation T : R 4 → R 3 : T(x1, x2, x3, x4) = (x1 − x2 + x3 − 3x4, x1 − x2 + 2x3 + 4x4, 2x1 − 2x2 + x3 + 5x4) (a) Compute T(~e1), T(~e2), T(~e3), and T(~e4). (b) Find an equation in vector form for the set of vectors ~x ∈ R 4 such that T(~x) = (−1, −4, 1). (c) What is the range of T?
Problem 2. Show that T is a linear transformation by finding a matrix that implements the...
Problem 2. Show that T is a linear transformation by finding a matrix that implements the mapping. Note that x1, x2, ... are not vectors but are entries in vectors. (a) T(x1, x2, x3, x4) = (0, x1 + x2, x2 + x3, x3 + x4) (b) T(x1, x2, x3, x4) = 2x1 + 3x3 − 4x4 (T : R4 → R)​ Please show T is a linear transformation for part (a) and (b).
Consider the following equations: y1 = a1y2 +a2y3 +x1 +x2 +e1 (1) y2 = by1+2x3+x1+e2 (2)...
Consider the following equations: y1 = a1y2 +a2y3 +x1 +x2 +e1 (1) y2 = by1+2x3+x1+e2 (2) y3 =cy1+e3 (3) Here a1, a2, b, c are unknown parameters of interest, which are all posi- tive. x1, x2, x3 are exogenous variables (uncorrelated with y1, y2 or y3). e1, e2, e3 are error terms. (a) In equation (1), why y2,y3 are endogenous? (b) what is (are) the instrumental variable(s) for y2, y3 in equation (1)? (no need to explain why) (c) In...
Let V1 = R4 and V2 = R2. Let T : V1 → V2 be the...
Let V1 = R4 and V2 = R2. Let T : V1 → V2 be the map dened by T x1 x2 x3 x4 = x1 −x2 + x4 x1 + x2 + x3 + x4 . (a) Show that T is a linear transformation. (b) Let u1 = 1 0 0 −1 , u2 = 0 1 −2 1 .Show that ( u1, u2) is a basis of kerT. (c) Show that imT = V2. (Hint: Compute T(e1) and...
10 Linear Transformations. Let V = R2 and W = R3. Define T: V → W...
10 Linear Transformations. Let V = R2 and W = R3. Define T: V → W by T(x1, x2) = (x1 − x2, x1, x2). Find the matrix representation of T using the standard bases in both V and W 11 Let T :R3 →R3 be a linear transformation such that T(1, 0, 0) = (2, 4, −1), T(0, 1, 0) = (1, 3, −2), T(0, 0, 1) = (0, −2, 2). Compute T(−2, 4, −1).
Problem 2. (20 pts.) show that T is a linear transformation by finding a matrix that...
Problem 2. (20 pts.) show that T is a linear transformation by finding a matrix that implements the mapping. Note that x1, x2, ... are not vectors but are entries in vectors. (a) T(x1, x2, x3, x4) = (0, x1 + x2, x2 + x3, x3 + x4) (b) T(x1, x2, x3, x4) = 2x1 + 3x3 − 4x4 (T : R 4 → R) Problem 3. (20 pts.) Which of the following statements are true about the transformation matrix...
b) More generally, find the matrix of the linear transformation T : R3 → R3 which...
b) More generally, find the matrix of the linear transformation T : R3 → R3 which is u1  orthogonal projection onto the line spanu2. Find the matrix of T. Prove that u3 T ◦ T = T and prove that T is not invertible.
Find eigenvectors associated with the eigenvalues of the following linear operator: (please show all steps) V=...
Find eigenvectors associated with the eigenvalues of the following linear operator: (please show all steps) V= R^3; T(x1,x2,x3) = (x1+x2, 2x2+2x3, 3x3)
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT