Question

The dependent variable y is missing in the given differential equation. Proceed as in Example 1...

The dependent variable y is missing in the given differential equation. Proceed as in Example 1 and solve the equation by using the substitution u = y'

y'' + (y' )2 + 1 = 0

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Solve the differential equation yy''= (1/2)(y')2 by using the substitution u=y'
Solve the differential equation yy''= (1/2)(y')2 by using the substitution u=y'
Solve the differential equation y' = 1 +te^(-y) using substitution u= e^(y)
Solve the differential equation y' = 1 +te^(-y) using substitution u= e^(y)
solve the given differential equation by using an appropriate substitution. The DE is a Bernoulli equation....
solve the given differential equation by using an appropriate substitution. The DE is a Bernoulli equation. x * dy/dx + y = 1/y^2
Consider the differential equation y′′+ 9y′= 0.( a) Let u=y′=dy/dt. Rewrite the differential equation as a...
Consider the differential equation y′′+ 9y′= 0.( a) Let u=y′=dy/dt. Rewrite the differential equation as a first-order differential equation in terms of the variables u. Solve the first-order differential equation for u (using either separation of variables or an integrating factor) and integrate u to find y. (b) Write out the auxiliary equation for the differential equation and use the methods of Section 4.2/4.3 to find the general solution. (c) Find the solution to the initial value problem y′′+ 9y′=...
(1 point) A Bernoulli differential equation is one of the form dydx+P(x)y=Q(x)yn     (∗) Observe that, if n=0...
(1 point) A Bernoulli differential equation is one of the form dydx+P(x)y=Q(x)yn     (∗) Observe that, if n=0 or 1, the Bernoulli equation is linear. For other values of n, the substitution u=y1−n transforms the Bernoulli equation into the linear equation dudx+(1−n)P(x)u=(1−n)Q(x).dudx+(1−n)P(x)u=(1−n)Q(x). Consider the initial value problem y′=−y(1+9xy3),   y(0)=−3. (a) This differential equation can be written in the form (∗) with P(x)= , Q(x)= , and n=. (b) The substitution u= will transform it into the linear equation dudx+ u= . (c) Using...
A Bernoulli differential equation is one of the form dy/dx+P(x)y=Q(x)y^n (∗) Observe that, if n=0 or...
A Bernoulli differential equation is one of the form dy/dx+P(x)y=Q(x)y^n (∗) Observe that, if n=0 or 1, the Bernoulli equation is linear. For other values of n, the substitution u=y^(1−n) transforms the Bernoulli equation into the linear equation du/dx+(1−n)P(x)u=(1−n)Q(x). Consider the initial value problem xy′+y=−8xy^2, y(1)=−1. (a) This differential equation can be written in the form (∗) with P(x)=_____, Q(x)=_____, and n=_____. (b) The substitution u=_____ will transform it into the linear equation du/dx+______u=_____. (c) Using the substitution in part...
1) Solve the given differential equation by finding, as in Example 4 of Section 2.4, an...
1) Solve the given differential equation by finding, as in Example 4 of Section 2.4, an appropriate integrating factor. (14 − 20y + e−5x) dx − 4 dy = 0 2) Solve the given initial-value problem. x dy/ dx + y = 2x + 1,   y(1) = 9 y(x) = Give the largest interval I over which the solution is defined. (Enter your answer using interval notation.) I = please show steps
A Bernoulli differential equation is one of the form dxdy+P(x)y=Q(x)yn Observe that, if n=0 or 1,...
A Bernoulli differential equation is one of the form dxdy+P(x)y=Q(x)yn Observe that, if n=0 or 1, the Bernoulli equation is linear. For other values of n, the substitution u=y^(1−n) transforms the Bernoulli equation into the linear equation du/dx+(1−n)P(x)u=(1−n)Q(x) Use an appropriate substitution to solve the equation y'−(3/x)y=y^4/x^2 and find the solution that satisfies y(1)=1
Solve the differential equation: dy/dx - y =e^x*y^2 (Using u=y^-1)
Solve the differential equation: dy/dx - y =e^x*y^2 (Using u=y^-1)
1) Solve the given differential equation by using an appropriate substitution. The DE is a Bernoulli...
1) Solve the given differential equation by using an appropriate substitution. The DE is a Bernoulli equation. x dy/dx +y= 1/y^2 2)Consider the following differential equation. (25 − y2)y' = x2 Let f(x, y) = x^2/ 25-y^2. Find the derivative of f. af//ay= Determine a region of the xy-plane for which the given differential equation would have a unique solution whose graph passes through a point (x0, y0) in the region. a) A unique solution exists in the region consisting...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT