Question

A Bernoulli differential equation is one of the form dy/dx+P(x)y=Q(x)y^n (∗) Observe that, if n=0 or...

A Bernoulli differential equation is one of the form

dy/dx+P(x)y=Q(x)y^n (∗)

Observe that, if n=0 or 1, the Bernoulli equation is linear. For other values of n, the substitution u=y^(1−n) transforms the Bernoulli equation into the linear equation

du/dx+(1−n)P(x)u=(1−n)Q(x).

Consider the initial value problem xy′+y=−8xy^2, y(1)=−1.

(a) This differential equation can be written in the form (∗) with P(x)=_____, Q(x)=_____, and n=_____.

(b) The substitution u=_____ will transform it into the linear equation du/dx+______u=_____.

(c) Using the substitution in part (b), we rewrite the initial condition in terms of x and u: u(1)=_____.

(d) Now solve the linear equation in part (b). and find the solution that satisfies the initial condition in part (c). u(x)=_____.

(e) Finally, solve for y. y(x)=_____.

PLEASE FILL IN THE BLANKS AND BOX THE ANSWERS

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
(1 point) A Bernoulli differential equation is one of the form dydx+P(x)y=Q(x)yn     (∗) Observe that, if n=0...
(1 point) A Bernoulli differential equation is one of the form dydx+P(x)y=Q(x)yn     (∗) Observe that, if n=0 or 1, the Bernoulli equation is linear. For other values of n, the substitution u=y1−n transforms the Bernoulli equation into the linear equation dudx+(1−n)P(x)u=(1−n)Q(x).dudx+(1−n)P(x)u=(1−n)Q(x). Consider the initial value problem y′=−y(1+9xy3),   y(0)=−3. (a) This differential equation can be written in the form (∗) with P(x)= , Q(x)= , and n=. (b) The substitution u= will transform it into the linear equation dudx+ u= . (c) Using...
A Bernoulli differential equation is one of the form dxdy+P(x)y=Q(x)yn Observe that, if n=0 or 1,...
A Bernoulli differential equation is one of the form dxdy+P(x)y=Q(x)yn Observe that, if n=0 or 1, the Bernoulli equation is linear. For other values of n, the substitution u=y^(1−n) transforms the Bernoulli equation into the linear equation du/dx+(1−n)P(x)u=(1−n)Q(x) Use an appropriate substitution to solve the equation y'−(3/x)y=y^4/x^2 and find the solution that satisfies y(1)=1
Consider the Bernoulli equation dy/dx + y = y^2, y(0) = −1 Perform the substitution that...
Consider the Bernoulli equation dy/dx + y = y^2, y(0) = −1 Perform the substitution that turns this equation into a linear equation in the unknown u(x). Solve the equation for u(x) using the Laplace transform. Obtain the original solution y(x). Does it sound familiar?
Solve the Bernoulli differential equation. The Bernoulli equation is a well-known nonlinear equation of the form...
Solve the Bernoulli differential equation. The Bernoulli equation is a well-known nonlinear equation of the form y' + P(x)y = Q(x)yn that can be reduced to a linear form by a substitution. The general solution of a Bernoulli equation is y1 − ne∫(1 − n)P(x) dx = (1 − n)Q(x)e∫(1 − n)P(x) dx dx + C. (Enter your solution in the form F(x, y) = C or y = F(x, C) where C is a needed constant.) y' − 10y...
Solve the Bernoulli differential equation. The Bernoulli equation is a well-known nonlinear equation of the form...
Solve the Bernoulli differential equation. The Bernoulli equation is a well-known nonlinear equation of the form y' + P(x)y = Q(x)yn that can be reduced to a linear form by a substitution. The general solution of a Bernoulli equation is y1 − ne∫(1 − n)P(x) dx = (1 − n)Q(x)e∫(1 − n)P(x) dx dx + C. (Enter your solution in the form F(x, y) = C or y = F(x, C) where C is a needed constant.) y8y' − 5y9...
Consider the following differential equation: dy/dx = −(3xy+y^2)/x^2+xy (a) Rewrite this equation into the form M(x,...
Consider the following differential equation: dy/dx = −(3xy+y^2)/x^2+xy (a) Rewrite this equation into the form M(x, y)dx + N(x, y)dy = 0. Determine if this equation is exact; (b) Multiply x on both sides of the equation, is the new equation exact? (c) Solve the equation based on Part (a) and Part (b).
Solve the bernoulli equation dy/dx+y/x=x/y3
Solve the bernoulli equation dy/dx+y/x=x/y3
solve the given differential equation by using an appropriate substitution. The DE is a Bernoulli equation....
solve the given differential equation by using an appropriate substitution. The DE is a Bernoulli equation. x * dy/dx + y = 1/y^2
(x-y)dx + (y+x)dy =0 Solve the differential equation
(x-y)dx + (y+x)dy =0 Solve the differential equation
Use the method for solving Bernoulli equations to solve the following differential equation dx/dy+5t^7x^9+x/t=0 in the...
Use the method for solving Bernoulli equations to solve the following differential equation dx/dy+5t^7x^9+x/t=0 in the form F(t,x)=c
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT