Question

Solve the differential equation: dy/dx - y =e^x*y^2 (Using u=y^-1)

Solve the differential equation: dy/dx - y =e^x*y^2 (Using u=y^-1)

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
1) Solve the given differential equation by separation of variables. exy dy/dx = e−y + e−6x...
1) Solve the given differential equation by separation of variables. exy dy/dx = e−y + e−6x − y 2) Solve the given differential equation by separation of variables. y ln(x) dx/dy = (y+1/x)^2 3) Find an explicit solution of the given initial-value problem. dx/dt = 7(x2 + 1),  x( π/4)= 1
Solve the given differential equation y-x(dy/dx)=3-2x2(dy/dx)
Solve the given differential equation y-x(dy/dx)=3-2x2(dy/dx)
(x-y)dx + (y+x)dy =0 Solve the differential equation
(x-y)dx + (y+x)dy =0 Solve the differential equation
Solve the differential equation: dy/dx = sin(x - y).
Solve the differential equation: dy/dx = sin(x - y).
Solve the Homogeneous differential equation (7 y^2 + 1 xy)dx - 1 x^2 dy = 0...
Solve the Homogeneous differential equation (7 y^2 + 1 xy)dx - 1 x^2 dy = 0 (a) A one-parameter family of solution of the equation is y(x) = (b) The particular solution of the equation subject to the initial condition y(1) =1/7.
Use the method for solving Bernoulli equations to solve the following differential equation. (dy/dx)+4y=( (e^(x))*(y^(-2)) )...
Use the method for solving Bernoulli equations to solve the following differential equation. (dy/dx)+4y=( (e^(x))*(y^(-2)) ) Ignoring lost solutions, if any, the general solution y= ______(answer)__________ (Type an expression using x as the variable) THIS PROBLEM IS A DIFFERENTIAL EQUATIONS PROBLEM. Only people proficient in differential equations should attempt to solve. Please write clearly and legibly. I must be able to CLEARLY read your solution and final answer. CIRCLE YOUR FINAL ANSWER.
Solve the differential equation dy/dx + 4(x^3)y = 8(x^3)
Solve the differential equation dy/dx + 4(x^3)y = 8(x^3)
A Bernoulli differential equation is one of the form dy/dx+P(x)y=Q(x)y^n (∗) Observe that, if n=0 or...
A Bernoulli differential equation is one of the form dy/dx+P(x)y=Q(x)y^n (∗) Observe that, if n=0 or 1, the Bernoulli equation is linear. For other values of n, the substitution u=y^(1−n) transforms the Bernoulli equation into the linear equation du/dx+(1−n)P(x)u=(1−n)Q(x). Consider the initial value problem xy′+y=−8xy^2, y(1)=−1. (a) This differential equation can be written in the form (∗) with P(x)=_____, Q(x)=_____, and n=_____. (b) The substitution u=_____ will transform it into the linear equation du/dx+______u=_____. (c) Using the substitution in part...
Solve the following differential equations. a.) dy/dx+2xy=x, y(0)=2 b.) ?^2(dy/dx)−?y=−y^2
Solve the following differential equations. a.) dy/dx+2xy=x, y(0)=2 b.) ?^2(dy/dx)−?y=−y^2
Solve: 1.dy/dx=(e^(y-x)).secy.(1+x^2),y(0)=0.    2.dy/dx=(1-x-y)/(x+y),y(0)=2 .
Solve: 1.dy/dx=(e^(y-x)).secy.(1+x^2),y(0)=0.    2.dy/dx=(1-x-y)/(x+y),y(0)=2 .