Question

Consider the differential equation y′′+ 9y′= 0.( a) Let u=y′=dy/dt. Rewrite the differential equation as a...

Consider the differential equation y′′+ 9y′= 0.(

a) Let u=y′=dy/dt. Rewrite the differential equation as a first-order differential equation in terms of the variables u. Solve the first-order differential equation for u (using either separation of variables or an integrating factor) and integrate u to find y.

(b) Write out the auxiliary equation for the differential equation and use the methods of Section 4.2/4.3 to find the general solution.

(c) Find the solution to the initial value problem y′′+ 9y′= 0, y(0) = 1, y′(0) = 1.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
1) Solve the given differential equation by separation of variables. exy dy/dx = e−y + e−6x...
1) Solve the given differential equation by separation of variables. exy dy/dx = e−y + e−6x − y 2) Solve the given differential equation by separation of variables. y ln(x) dx/dy = (y+1/x)^2 3) Find an explicit solution of the given initial-value problem. dx/dt = 7(x2 + 1),  x( π/4)= 1
Consider the differential equation. Find the solution y(0) = 2. dy/dt = 4t/2yt^2 + 2t^2 +...
Consider the differential equation. Find the solution y(0) = 2. dy/dt = 4t/2yt^2 + 2t^2 + y + 1
Solve the following differential equation using Laplace dy/dt +2y=12sin4t y(0) =10
Solve the following differential equation using Laplace dy/dt +2y=12sin4t y(0) =10
consider the equation y*dx+(x^2y-x)dy=0. show that the equation is not exact. find an integrating factor o...
consider the equation y*dx+(x^2y-x)dy=0. show that the equation is not exact. find an integrating factor o the equation in the form u=u(x). find the general solution of the equation.
Consider the autonomous differential equation dy/ dt = f(y) and suppose that y1 is a critical...
Consider the autonomous differential equation dy/ dt = f(y) and suppose that y1 is a critical point, i.e., f(y1) = 0. Show that the constant equilibrium solution y = y1 is asymptotically stable if f 0 (y1) < 0 and unstable if f 0 (y1) > 0.
Consider the following differential equation: dy/dx = −(3xy+y^2)/x^2+xy (a) Rewrite this equation into the form M(x,...
Consider the following differential equation: dy/dx = −(3xy+y^2)/x^2+xy (a) Rewrite this equation into the form M(x, y)dx + N(x, y)dy = 0. Determine if this equation is exact; (b) Multiply x on both sides of the equation, is the new equation exact? (c) Solve the equation based on Part (a) and Part (b).
4. Consider the differential equation dy/dt = −ay with a > 0 an (unspecified) constant. (a)...
4. Consider the differential equation dy/dt = −ay with a > 0 an (unspecified) constant. (a) Write out the Euler step (i.e. yk as a function of yk−1) for the initial value problem y(t0) = y0, with arbitrary step size ∆t. (b) Find a number u > 0 such that if ∆t > u, then |yk| diverges to +∞ as k goes to +∞. The number u should be expressed as a function of the constant a. (c) Find another...
Write a matlab script file to solve the differential equation dy/dt = 1 − y^3 with...
Write a matlab script file to solve the differential equation dy/dt = 1 − y^3 with initial condition y(0)=0, from t=0 to t=10. matlab question
dx/dt - 3(dy/dt) = -x+2 dx/dt + dy/dt = y+t Solve the system by obtaining a...
dx/dt - 3(dy/dt) = -x+2 dx/dt + dy/dt = y+t Solve the system by obtaining a high order linear differential equation for the unknown function of x (t).
Solve the initial value problem 9(t+1) dy dt −6y=18t, 9(t+1)dydt−6y=18t, for t>−1 t>−1 with y(0)=14. y(0)=14....
Solve the initial value problem 9(t+1) dy dt −6y=18t, 9(t+1)dydt−6y=18t, for t>−1 t>−1 with y(0)=14. y(0)=14. Find the integrating factor, u(t)= u(t)= , and then find y(t)= y(t)=
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT