Question

evaluate area of curved surface paraboloid z=9-x^2-y^2 in the first octant using surface integral

evaluate area of curved surface paraboloid z=9-x^2-y^2 in the first octant using surface integral

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
4. Consider the solid bounded by the paraboloid x^2+ y^2 + z = 9 as well...
4. Consider the solid bounded by the paraboloid x^2+ y^2 + z = 9 as well as by the planes y = 3x and z = 0 in the first octant. (a) Graph the integration domain D. (b) Calculate the volume of the solid with a double integral.
1. Evaluate ???(triple integral) E x + y dV where E is the solid in the...
1. Evaluate ???(triple integral) E x + y dV where E is the solid in the first octant that lies under the paraboloid z−1+x2+y2 =0. 2.Evaluate ???(triple integral) square root ?x^2+y^2+z^2 dV where E lies above the cone z = square root x^2+y^2 and between the spheres x^2+y^2+z^2=1 and x^2+y^2+z^2=9
Let S be the boundary of the solid bounded by the paraboloid z=x^2+y^2 and the plane...
Let S be the boundary of the solid bounded by the paraboloid z=x^2+y^2 and the plane z=16 S is the union of two surfaces. Let S1 be a portion of the plane and S2 be a portion of the paraboloid so that S=S1∪S2 Evaluate the surface integral over S1 ∬S1 z(x^2+y^2) dS= Evaluate the surface integral over S2 ∬S2 z(x^2+y^2) dS= Therefore the surface integral over S is ∬S z(x^2+y^2) dS=
In the following problems, the surface S is the part of the paraboloid z= x^2 +...
In the following problems, the surface S is the part of the paraboloid z= x^2 + y^2 which lies below the plane z= 4, and includes the circular intersection with this plane. This single surface S could also be described as being contained inside the cylinder x^2+y^2= 4. (a) Iterate, but do not evaluate, the integral ∫∫S(z+x) dS in terms of two parameters. Write the integrand in simplest form. (b) Use Stoke’s theorem to rewrite ∫S(delta X F) · ndS...
Evaluate the surface integral (double integral) over S: G(x,y,z) d sigma using a parametric description of...
Evaluate the surface integral (double integral) over S: G(x,y,z) d sigma using a parametric description of the surface. G(x,y,z)= 3z^2, over the hemisphere x^2+y^2+z^2=16, with z greater than or equal to 0.
Set up an iterated integral for the surface area of the part of the plane x...
Set up an iterated integral for the surface area of the part of the plane x + y + z = 6 that lies in the first octant.
Find the area of the surface. The part of the paraboloid z=1-x^2-y^2 that lies above the...
Find the area of the surface. The part of the paraboloid z=1-x^2-y^2 that lies above the plane z=-2 (Please post hand writing one) thank you
2. Evaluate the double integral Z Z R e ^(x^ 2+y ^2) dA where R is...
2. Evaluate the double integral Z Z R e ^(x^ 2+y ^2) dA where R is the semicircular region bounded by x ≥ 0 and x^2 + y^2 ≤ 4. 3. Find the volume of the region that is bounded above by the sphere x^2 + y^2 + z^2 = 2 and below by the paraboloid z = x^2 + y^2 . 4. Evaluate the integral Z Z R (12x^ 2 )(y^3) dA, where R is the triangle with vertices...
Evaluate the surface integral (x+y+z)dS when S is part of the half-cylinder x^2 +z^2=1, z≥0, that...
Evaluate the surface integral (x+y+z)dS when S is part of the half-cylinder x^2 +z^2=1, z≥0, that lies between the planes y=0 and y=2
Evaluate the surface integral. S z + x2y dS S is the part of the cylinder...
Evaluate the surface integral. S z + x2y dS S is the part of the cylinder y2 + z2 = 4 that lies between the planes x = 0 and x = 3 in the first octant
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT