Question

Evaluate the surface integral (double integral) over S: G(x,y,z) d sigma using a parametric description of...

Evaluate the surface integral (double integral) over S: G(x,y,z) d sigma using a parametric description of the surface.

G(x,y,z)= 3z^2, over the hemisphere x^2+y^2+z^2=16, with z greater than or equal to 0.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Evaluate the surface integral. S (x + y + z) dS, S is the parallelogram with...
Evaluate the surface integral. S (x + y + z) dS, S is the parallelogram with parametric equations x = u + v, y = u − v, z = 1 + 2u + v, 0 ≤ u ≤ 7, 0 ≤ v ≤ 4.
Use Stokes' Theorem to evaluate the surface integral ∬ G curl F ⋅ n d S...
Use Stokes' Theorem to evaluate the surface integral ∬ G curl F ⋅ n d S where F ( x , y , z ) = ( z 2 − y ) i + ( x + y z ) j + x z k , G is the surface G = { ( x , y , z ) | z = 1 − x 2 − y 2 , z ≥ 0 } and n is the upward...
Compute the surface integral of F(x, y, z) = (y,z,x) over the surface S, where S...
Compute the surface integral of F(x, y, z) = (y,z,x) over the surface S, where S is the portion of the cone x = sqrt(y^2+z^2) (orientation is in the negative x direction) between the planes x = 0, x = 5, and above the xy-plane. PLEASE EXPLAIN
Consider the integral of f(x, y, z) = z + 1 over the upper hemisphere σ:...
Consider the integral of f(x, y, z) = z + 1 over the upper hemisphere σ: z = 1 − x2 − y2 (0 ≤ x2 + y2 ≤ 1). (a) Explain why evaluating this surface integral using (8) results in an improper integral. (b) Use (8) to evaluate the integral of f over the surface σr : z = 1 − x2 − y2 (0 ≤ x2 + y2 ≤ r2 < 1). Take the limit of this result...
Evaluate the surface integral (x+y+z)dS when S is part of the half-cylinder x^2 +z^2=1, z≥0, that...
Evaluate the surface integral (x+y+z)dS when S is part of the half-cylinder x^2 +z^2=1, z≥0, that lies between the planes y=0 and y=2
Evaluate the surface integral. 5. " S x 2 z dσ; S that part of the...
Evaluate the surface integral. 5. " S x 2 z dσ; S that part of the cylinder x 2 + z 2 = 1 which lies between the planes y = 0 and y = 2, and is above the xy-plane.
Evaluate the surface integral S F · dS for the given vector field F and the...
Evaluate the surface integral S F · dS for the given vector field F and the oriented surface S. In other words, find the flux of F across S. For closed surfaces, use the positive (outward) orientation. F(x, y, z) = yi − xj + 4zk, S is the hemisphere x^2 + y2^ + z^2 = 4, z ≥ 0, oriented downward
Evaluate double integral Z 2 0 Z 1 y/2 cos(x^2 )dx dy (integral from 0 to...
Evaluate double integral Z 2 0 Z 1 y/2 cos(x^2 )dx dy (integral from 0 to 2)(integral from y/2 to 1) for cos(x^2) dx dy
2. Evaluate the double integral Z Z R e ^(x^ 2+y ^2) dA where R is...
2. Evaluate the double integral Z Z R e ^(x^ 2+y ^2) dA where R is the semicircular region bounded by x ≥ 0 and x^2 + y^2 ≤ 4. 3. Find the volume of the region that is bounded above by the sphere x^2 + y^2 + z^2 = 2 and below by the paraboloid z = x^2 + y^2 . 4. Evaluate the integral Z Z R (12x^ 2 )(y^3) dA, where R is the triangle with vertices...
evaluate area of curved surface paraboloid z=9-x^2-y^2 in the first octant using surface integral
evaluate area of curved surface paraboloid z=9-x^2-y^2 in the first octant using surface integral