Question

Find the area of the surface. The part of the paraboloid z=1-x^2-y^2 that lies above the...

Find the area of the surface. The part of the paraboloid z=1-x^2-y^2 that lies above the plane z=-2

(Please post hand writing one) thank you

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Find the area of the surface The part of the parabloid z=4-x^2-y^2 that lies above the...
Find the area of the surface The part of the parabloid z=4-x^2-y^2 that lies above the xy-plane
Consider the part of the paraboloid x = 4 − y ^2 − z ^2 that...
Consider the part of the paraboloid x = 4 − y ^2 − z ^2 that lies in front of the plane x = 0. (a) What is its mass if its density is ρ(x, y, z) = y^2 + z ^2 g/cm^2 ? (b) What is its surface area?
Find the volume of the solid that lies under the paraboloid z = x^2 + y^2...
Find the volume of the solid that lies under the paraboloid z = x^2 + y^2 , above the xy-plane and inside the cylinder x^2 + y^2 = 1.
Consider the surface given by the part of the plane z=y+3 that lies inside the cylinder...
Consider the surface given by the part of the plane z=y+3 that lies inside the cylinder x^2+y^2=4 a. Find a parametric representation of the surface b. find the area of the above surface
7. What is the surface area of the paraboloid parametrized in problem 5(b)? (The paraboloid from...
7. What is the surface area of the paraboloid parametrized in problem 5(b)? (The paraboloid from problem 5(b) is z = 4 - x^2 - y^2 which lies above the xy-plane)
In the following problems, the surface S is the part of the paraboloid z= x^2 +...
In the following problems, the surface S is the part of the paraboloid z= x^2 + y^2 which lies below the plane z= 4, and includes the circular intersection with this plane. This single surface S could also be described as being contained inside the cylinder x^2+y^2= 4. (a) Iterate, but do not evaluate, the integral ∫∫S(z+x) dS in terms of two parameters. Write the integrand in simplest form. (b) Use Stoke’s theorem to rewrite ∫S(delta X F) · ndS...
find volume lies below surface z=2x+y and above the region in xy plane bounded by x=0...
find volume lies below surface z=2x+y and above the region in xy plane bounded by x=0 ,y=1 and x=y^1/2
Let F(x, y, z) = z tan−1(y^2)i + z^3 ln(x^2 + 7)j + zk. Find the...
Let F(x, y, z) = z tan−1(y^2)i + z^3 ln(x^2 + 7)j + zk. Find the flux of F across S, the part of the paraboloid x^2 + y^2 + z = 29 that lies above the plane z = 4 and is oriented upward.
Let F(x,y,z) = ztan-1(y^2) i + (z^3)ln(x^2 + 8) j + z k. Find the flux...
Let F(x,y,z) = ztan-1(y^2) i + (z^3)ln(x^2 + 8) j + z k. Find the flux of F across the part of the paraboloid x2 + y2 + z = 20 that lies above the plane z = 4 and is oriented upward.
Use surface integrals to find the area of the part of the surface given z =...
Use surface integrals to find the area of the part of the surface given z = x2 + y that lies above the triangle with verticies (0, 0), (1, 0), and (1, 2).